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Endothelin-1 

 
Alexandra Paradis 

 
Doctor of Philosophy, Graduate Program in Pharmacology 

Loma Linda University, March 2015 
Dr. Lubo Zhang, Chairperson 

 
 

Heart disease is the leading cause of death worldwide. Numerous epidemiological 

and animal studies have indicated that an adverse intrauterine environment is associated 

with increased risk for cardiovascular disease. Therefore proper cardiac development is 

imperative in optimizing cardiac function throughout life. A key process in determining 

cardiomyocyte endowment, and thus cardiac function, is the period of terminal 

differentiation. This involves the maturation of cardiomyocytes and is essential to heart 

development, however acceleration of this process may alter cardiomyocyte endowment. 

Hypoxia/anoxia is a major perinatal stressor that often afflicts the fetus as well as the 

premature infant, and leads to the production of endothelin-1. Our study aims to test the 

hypothesis that perinatal hypoxia exposure induces a premature terminal differentiation 

of cardiomyocytes, focusing on the role of endothelin-1 and the underlying epigenetic 

and molecular mechanisms. We established two rat models for this study: 1) ex vivo 

endothelin-1 treatment of fetal cardiomyocytes, and 2) in vivo anoxia episodic treatment 

of neonatal rats. In the first part of our study, we demonstrated that endothelin-1 exposure 

promoted premature terminal differentiation of cardiomyocytes. Furthermore, this effect 

was associated with an increase in global DNA methylation. Our next section of the study 

simulated the major clinical problem of premature birth and the anoxic episodes that 
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often accompany it.  We demonstrated that early neonatal anoxic episodes decrease 

cardiomyocyte proliferation during the first two weeks of life. Moreover, this loss of 

proliferation ultimately resulted in a decrease in cardiomyocyte endowment by day 14 

when the heart is essentially mature. Furthermore, the ETA-receptor appears to be a key 

mediator of these effects. Lastly, our third section identified several proteins in the fetal 

cardiomyocyte that were altered due to endothelin-1. Many of the proteins are associated 

with proliferation and survival and may help elucidate a molecular mechanism for 

endothelin-1-induced cardiomyocyte maturation. These findings provide new insights in 

the understanding of hypoxia-induced terminal differentiation of cardiomyocytes and the 

role of endothelin-1 as well as the epigenetic and molecular mechanisms involved. This 

study provides supporting evidence of the detrimental effects of perinatal hypoxia/anoxia 

on cardiac development, and thus function for a lifetime. 

!
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CHAPTER ONE 

INTRODUCTION 

Developmental Programming of Health and Disease 

 It has been well established that an adverse intrauterine environment is associated 

with an increased predisposition to cardiovascular disease (Barker, 1995, 1997, 2004). 

Therefore this timeframe and critical environment is highly influential on the health of an 

individual across their lifetime. Its influence can lead to structural and functional 

adaptations of several organs, including the heart. Persistence of these adaptations can 

increase vulnerability to disease later in life (Barker, 1990, 2004; Botting et al., 2012). A 

study has shown that adult rats, which were exposed to an adverse environment in utero, 

were more susceptible to ischemic injury when encountering a stress later in life (G. Li et 

al., 2003). 

In terms of the developing heart, an adverse environment may alter 

cardiomyocyte number and be responsible for this increased susceptibility to 

cardiovascular disease. In support, animal studies provide evidence that fetal stress 

caused by hypoxia (Bae, Xiao, Li, Casiano, & Zhang, 2003; Botting, McMillen, Forbes, 

Nyengaard, & Morrison, 2014), as well as other factors (Bubb et al., 2007; Corstius et al., 

2005; Giraud, Louey, Jonker, Schultz, & Thornburg, 2006), affects both the number of 

cardiomyocytes and the ability of the heart to cope with stress later in life. 

 

Heart Development and Cardiomyocyte Terminal Differentiation 

Cardiomyocytes are the functional unit of the heart; therefore the number of 

viable myocytes dictates cardiac function. The total cardiomyocyte population is 
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determined early in life during the fetal development and around birth, with negligible 

increases thereafter (Bergmann et al., 2009). Hence, preservation of cardiomyocyte 

number will fortify the heart and allow adequate response to stress later in life. 

It has long been held that the heart loses proliferative capacity soon after birth in 

most mammals (Ahuja, Sdek, & MacLellan, 2007; Burrell et al., 2003; Clubb & Bishop, 

1984). This timeframe is consistent with the conversion of cardiomyocytes from a 

mononucleate to binucleate phenotype. Binucleation is a characteristic of terminally 

differentiated cells that are unable to proliferate, whereas mononucleate cells continue to 

cycle (Figure 1.1). Early in normal fetal development the majority of cardiomyocytes are 

mononucleate, allowing growth to be achieved by proliferation. In the timeframe 

surrounding birth, the heart maturation occurs in which mononucleate cells begin the 

transition to a binucleate phenotype. The uncoupling of cytokinesis from karyokinesis 

and ultimate exit of the cell cycle characterize the transition, resulting in binucleation (F. 

Li, Wang, Capasso, & Gerdes, 1996). Subsequent increases in heart size are independent 

of proliferation and the result of increases in individual cell size termed hypertrophy. 
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Figure 1.1. Cardiomyocyte terminal differentiation. Early in development, 
cardiomyocytes are mononucleate and exhibit cell cycle activity. As cardiomyocytes 
become terminally differentiated, they progressively exit the cell cycle and the 
percentage of binucleate cardiomyocytes is increased.!
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In humans, the fetal heart consists of mainly mononucleate cardiomyocytes and 

thus is the time point in which most proliferation occurs. Prior to birth, binucleation 

begins and by birth the heart is essentially mature. Similarly, sheep follow this pattern of 

development, providing a close model for studying the heart. Rodents are another 

commonly used model however it is to be noted that cardiomyocyte binucleation in 

rodents begins and ends within the first two weeks after birth (F. Li et al., 1996). In all 

these species, the adult heart contains the greatest amount of binucleate cells when 

compared to the fetal and neonatal stage. However the percentage of binucleate cells 

within the adult heart varies among species, as reviewed by Botting et. al. (Botting et al., 

2012). In humans, there is considerable debate on the amount of binucleate cells present 

in the adult heart, with percentages ranging from 25 to 60 (Botting et al., 2012). Rodents 

and sheep, on the other hand, have approximately 90 percent of the cardiomyocyte 

population binucleated (Botting et al., 2012).  

A rodent model is advantageous in studying heart development in that it allows 

interventions to be performed after birth but while the heart is still immature. In this way, 

a more direct effect of treatment on the individual newborn rats can be observed as 

opposed to treatment performed in utero. The rodent heart reaches full maturation at 

postnatal day 14 thus providing a two-week window for both performing treatment and 

observing its effects on heart development and maturation. Therefore studying the 

neonatal rat heart provides a model to study the equivalent maturation process that occurs 

in both the fetal and preterm human heart. 

The loss of proliferation and the increase of binucleate cardiomyocytes 

characterize this transition to a terminally differentiated state. In the adult heart, the 
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proliferative capacity of cardiomyocytes is lost, and the heart is known to exhibit only 

negligible increases in cell number (Bergmann et al., 2009). Thus once this transition 

occurs, the number of cardiomyocytes that will reside in the heart throughout the lifetime 

of that individual is determined. While this is a normal transition, if it occurs too early or 

at an accelerated pace, it may ultimately affect the number of cardiomyocytes endowed in 

the heart. 

At this point, the physiological importance of binucleation is still poorly 

understood. A plausible explanation is that multinucleation optimizes cellular response, 

enhancing cell survival when coping with stress (Anatskaya & Vinogradov, 

2007). Another argument is that binucleation occurs in order to meet the high metabolic 

demand of cardiomyocytes. As such binucleation plays an advantageous role in allowing 

the cell to generate twice the amount of RNA in order to synthesize proteins (Ahuja, 

Sdek, et al., 2007). Although the role of binucleation is unclear, the percentage of 

binucleation can be used as a parameter to identify mature cardiomyocytes. 

 

Potential Mechanisms of Terminal Differentiation 

The molecular mechanisms responsible for cardiomyocyte binucleation remain 

unknown. Considering the distinct characteristics between the two cardiomyocyte 

phenotypes, it is apparent that a marked change in cell cycle activity must occur to 

achieve binucleation. The process appears to be tightly associated with regulation of the 

cell cycle, cytokinesis, and epigenetic mechanisms. 
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Cell Cycle Regulation 

Cell cycle regulators are differentially expressed within the mononucleate versus 

binucleate state. Cardiomyocytes exit the cell cycle following binucleation and as such 

are terminally differentiated.  Cell cycle phases include gap phase 1 (G1), synthesis phase 

(S), gap phase 2 (G2), and mitosis (M). The G0 phase provides an exit route from the cell 

cycle in which the cells remain in an indefinite quiescent state. Molecules that determine 

the rate of growth and proliferation include cyclin-dependent kinases (CDKs) and their 

inhibitors (CDKIs). CDKs promote the cell cycle whereas CDKIs are known to inhibit 

the cell cycle (Brooks, Poolman, & Li, 1998). During the fetal development, CDKs are 

highly expressed within the heart and become downregulated in adulthood. Conversely, 

the negative regulators of cell cycle, such as CDKIs, are then upregulated in the adult 

heart (Pasumarthi & Field, 2002). The prominent CDKIs, such as p21, p27, and p57, 

appear to play a role in the cardiomyocyte arrest of the cell cycle during development (as 

reviewed in (Brooks et al., 1998)). In neonatal cardiomyocytes, targeting p21 and p27 via 

siRNA knockdown promoted proliferation and progression of cells into the S 

phase. Furthermore, the proliferation of adult cardiomyocytes was induced with the 

knockdown of the three CDKIs: p21, p27, and p57 (Di Stefano, Giacca, Capogrossi, 

Crescenzi, & Martelli, 2011). Maternal hypoxia has also been shown to downregulate 

cyclin D2 and upregulate p27 expression, associated with a decrease in proliferation of 

fetal cardiomyocytes (Tong, Xiong, Li, & Zhang, 2013). 

A conserved splice variant of cyclin D2, D2SV, has been shown to induce 

embryonic cardiomyocytes to exit the cell cycle while reducing the capacity to enter the 

cell cycle. D2SV forms micro-aggregates that sequester cell cycle promoting proteins 
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such as CDK4, cyclin D2, and cyclin B1, leading to cell cycle exit (Sun, Zhang, Wafa, 

Baptist, & Pasumarthi, 2009). D2SV expression in the embryonic heart is higher than the 

adult, contrary to expectations. The role of D2SV in negatively regulating proliferation, 

underlines the inherent ability of the heart to autoregulate cell cycle activity. This 

mechanism appears to be essential in optimizing cardiomyocyte number. Maintenance of 

the balance between promotion and inhibition of the cell cycle is necessary to obtain the 

full potential of the heart. 

Liu et al. found that cyclin G1 expression in the mouse heart was low during fetal 

(E18) and postnatal day 2, and was increased from day 4 on (Z. Liu, Yue, Chen, Kubin, 

& Braun, 2010). The expression of this cell cycle protein corresponds with the 

polyploidization of cardiomyocytes. This study demonstrated that overexpression of 

cyclin G1 stimulated S-phase entry but blocked cytokinesis, the latter exhibiting a 

stronger effect. By knocking-out cyclin G1, several pro-proliferative factors such as 

proliferating cell nuclear antigen (PCNA), survivin, aurora B, and mad2 were 

downregulated, suggesting that cardiomyocytes exited the cell cycle (Z. Liu et al., 2010). 

Altogether, cyclin G1 expression is associated with cardiomyocyte transition and 

increases multi-nucleation of these cells. 

In rodents, cardiomyocyte transition occurs during the first two weeks of postnatal 

life.  The majority of myocytes are binucleate by postnatal day 7 (P7) (F. Li et al., 

1996). A recent study identified a potential candidate regulator involved in this process, 

FAK-related non-kinase (FRNK) (O'Neill, Mack, & Taylor, 2012). FRNK is an 

endogenous inhibitor of a major factor in cardiac growth, the focal adhesion kinase 

(FAK). FRNK expression is increased during the first postnatal week, peaking at P7 



www.manaraa.com

 

8!

through P14. Together with the finding that bromodeoxyuridine uptake is higher in hearts 

of FRNK null mice, these data implicate the role of FRNK in the suppression of cardiac 

DNA synthesis in postnatal life. The FRNK null mouse hearts from P14 and P21 also 

showed significantly elevated levels of Aurora-B, a protein necessary for cytokinesis 

(O'Neill et al., 2012). The peak expression of this factor is consistent with the time frame 

in which the majority of cardiomyocyte terminal differentiation occurs, providing 

evidence that FRNK is a regulatory factor in the maturation of postnatal cardiomyocytes. 

In addition, YAP1 is a main target for the Hippo kinase cascade, a key pathway in 

regulating organ growth. When Yap1 is inactivated in the fetal heart, lethal hypoplasia 

and decreased proliferation results (von Gise et al., 2012; Xin et al., 2011). In turn, YAP1 

activation promotes proliferation of both fetal and postnatal cardiomyocytes while also 

activating several cell cycle genes, such as cyclin A2, cyclin B1, and cyclin-dependent 

kinase 1. Furthermore, the YAP1-induced cardiomyocyte proliferation requires 

interaction with TEAD transcription factors (von Gise et al., 2012). The targeting of 

Yap1 and upstream regulation of the kinase pathway leading to its activation appear to be 

involved in cardiomyocyte terminal differentiation. 

Oxidative stress can be induced by hypoxia; the role of reactive oxygen species 

(ROS) on cardiomyocyte transition was evaluated using the scavenger, N-acetyl-L-

cysteine (NAC). In vivo treatment of dams with NAC followed by in vitro treatment of 

isolated cardiomyocytes resulted in increased proliferating cell nuclear antigen (PCNA) 

expression and decreased binucleation. In addition, these NAC-treated cardiomyocytes 

had decreased expression of p38 MAPK and Connexin43 (Cx43), whereas ROS was 
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shown to activate p38 MAPK and increase expression of Cx43 (Matsuyama & Kawahara, 

2011). 

The regulation of cardiomyocyte transition is intricate and subjected to a complex 

molecular mechanism. The involvement of numerous factors is necessary in maintaining 

tight control of this significant event in the heart development. Notably, at any time point, 

both stimulators and inhibitors are modulating the overall cardiomyocyte 

population. While myocytes are actively proliferating in the developing heart it is 

important to maintain mechanisms that will prevent excessive hyperplasia. As 

cardiomyocytes become binucleate, a gradual decrease in proliferative factors and 

simultaneous increase in inhibitors occurs. This extensive regulation illustrates the 

significance of maintaining optimal cardiomyocyte number. 

 
 

Epigenetic Regulation 

Epigenetic modifications refer to changes in the expression of genes independent 

of the DNA sequence. The intrauterine environment has been shown to play an active 

role in affecting development via epigenetic mechanisms (Barker, 1990, 2004; Webster 

& Abela, 2007; L. Zhang, 2005) and attributing to long-term adverse effects, known as 

fetal programming. Initially, an organ can adapt to facilitate immediate survival and 

functional compensation. However, sustained stress may result in compromised 

physiology and/or tissue remodeling of an organ.  

The epigenetic mechanisms involved in differentiation from progenitor cells to 

cardiomyocytes have been investigated (Wamstad et al., 2012). However, few studies 

have focused on the final step, i.e. terminal differentiation. It is known that the heart 
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responds to environmental cues by modifying the epigenome (Patterson, Chen, Xue, 

Xiao, & Zhang, 2010; Stein et al., 2011), however the specific details of this regulation of 

cardiomyocyte maturation are lacking. 

Polycomb Repressive Complex (PRC)2 is known to be involved in the 

trimethylation of histone H3 at lysine 27 (H3K27me3). This complex is important in 

regulating developmental processes and it is involved in suppressing genes leading to 

cellular differentiation (T. I. Lee et al., 2006). A component of this complex, enhancer of 

zeste (Ezh)2 is believed to ensure normal cardiac growth and adult activity (Delgado-

Olguin et al., 2012). Ezh2 has also been shown to repress negative regulators of the cell 

cycle such as Ink4a and Ink4b. He et al. inactivated the Ezh2 subunit of PRC2 and noted 

hypoplasia and upregulation of Ink4a/b (He et al., 2012). Another PRC2 component, 

EED (embryonic ectoderm development) is important for heart development. In fetal 

cardiomyocytes, inactivation of EED results in perinatal lethal heart defects as well as an 

upregulation of Ink4a, Ink4b, and other key developmental regulators (He et al., 2012). 

This data, taken together, implicates the PRC2 complex and its components (Ezh2 and 

EED) as regulators of proliferation in the heart, potentially via epigenetic modifications. 

Kou and colleagues investigated other epigenetic mechanisms involved in the 

maturation of cardiomyocytes (Kou et al., 2010). As noted before, terminal 

differentiation and binucleation are inversely correlated to proliferation. A significant 

increase in global methylation in the heart occurs during the neonatal period (Kou et al., 

2010), the same time frame for which binucleation occurs. Furthermore, expression of 

DNA methyltransferases involved in de novo DNA methylation (DNMT3a and 

DNMT3b) was significantly increased during the first 90 days of postnatal life. Inhibition 
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of methylation with 5-azacytidine during neonatal day 7 and 10 resulted in a marked 

increase in DNA synthesis and delayed maturation. Histone modifications were also 

noted. Altogether these changes are associated with the terminally differentiated form of 

cardiomyocytes, whereas a DNA methylation inhibitor reverted the myocytes to a less 

differentiated state. This study provides evidence for a role of methylation in both the 

reduction of proliferation and progression of cardiomyocytes to terminal differentiation. 

Binucleate myocytes are both non-proliferative and terminally differentiated. Therefore, 

it is plausible to hypothesize that binucleation might be associated with methylation-

induced suppression of proliferation. 

The discovery of the epigenome has expanded the possibilities of biological 

regulation. Epigenetic modifications are employed in a variety of biological processes 

including fetal programming of disease state as well as normal development. This role in 

terminal differentiation of cardiomyocytes is of particular interest. These studies provide 

evidence for the involvement of the epigenome in regulating cardiomyocyte proliferation 

and maturation. This complex regulation appears to include DNA methylation and 

histone modifications. With the observation that epigenetics is key in cardiomyocyte 

maturation the focus should be on further elucidating these intricate mechanisms. 

 

Perinatal Hypoxia and Heart Development 

The intrauterine environment is physiologically “hypoxic” and necessary for the 

development and function of organs in the fetal stage (Giaccia, Simon, & Johnson, 2004; 

Ream, Ray, Chandra, & Chikaraishi, 2008; Webster & Abela, 2007). However severe 

hypoxia can be detrimental to organ development (Webster & Abela, 2007), particularly 
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an essential organ such as the heart. In the light of the field of fetal programming, this 

perinatal stress may yield life-long detrimental effects on the heart. 

Hypoxia is induced under a variety of conditions including nicotine exposure, 

drug abuse, high altitude pregnancy, preeclampsia, anemia, and placental insufficiency 

(L. Zhang, 2005). Reduced oxygen to the fetus can affect a number of developmental 

processes and result in growth restriction (Jensen & Moore, 1997; McCullough, Reeves, 

& Liljegren, 1977). Previous studies have shown that hypoxia directly reduces 

proliferation in fetal rat cardiomyocytes, marked by reduced Ki-67 expression, a 

proliferation marker (Tong et al., 2013). The downregulation of cyclin D2, a cell cycle 

activator, and upregulation of p27, a cell cycle inhibitor, were associated with reduced 

proliferation in hypoxia.  Hypoxic conditions also upregulated the tissue inhibitor of 

metalloproteinases, TIMP-3 and -4 (Tong et al., 2013). Upon knockdown, TIMP-3 

increased cyclin D2 and Ki-67 in control cardiomyocytes, whereas TIMP-4 had no effect. 

However, the hypoxia-mediated effects were blocked completely by TIMP-4 and only 

partially by TIMP-3. This data implicates these inhibitors as potential candidates for 

enhanced cardiac remodeling and reduced proliferation (Tong et al., 2013).  A maternal 

hypoxia model was also found to increase size and percent of binucleate cardiomyocytes 

(Bae et al., 2003), as well as induce remodeling of the fetal and neonatal rat heart (Tong, 

Xue, Li, & Zhang, 2011). A study by Jonker et al. using a fetal anemia sheep model 

reported larger, more mature cardiomyocytes and a marked increase in binucleation 

compared to control (Jonker et al., 2010).  

Several studies have also shown an increase in cell size of neonatal rat 

cardiomyocytes via hypoxia-induced hypertrophy both in vitro (Chu et al., 2012; Ito et 
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al., 1996) and in vivo (Radom-Aizik et al., 2013). Furthermore in vitro hypoxia followed 

by reoxygenation led to premature senescence and reduced proliferation of neonatal rat 

cardiomyocytes (F. X. Zhang et al., 2007). Altogether these studies suggest that hypoxia 

stimulates the transition of cardiomyocytes to a terminally differentiated form. 

On the contrary, there are a number of studies in support of hypoxia-induced 

proliferation of cardiomyocytes.  In adult zebrafish, hypoxia induced by ventricular 

amputation has been shown to mediate heart regeneration (Jopling, Sune, Faucherre, 

Fabregat, & Izpisua Belmonte, 2012), which occurs through the proliferation and 

dedifferentiation of cardiomyocytes (Jopling et al., 2010). Furthermore, transgenic mice 

overexpressing hypoxia-inducible factor 1alpha (HIF1α) had reduced infarct size and 

enhanced cardiac function at 4 weeks after injury with myocardial infarction (Kido et al., 

2005). Additionally, neonatal cardiomyocytes treated with C3orf58, a hypoxia and Akt 

induced stem cell factor (HASF) exhibited increased DNA synthesis and number of cells 

in mitosis and cytokinesis. Altogether this demonstrates that HASF can induce 

proliferation of cardiomyocytes, specifically via the PI3K-AKT-CDK7 pathway (Beigi et 

al., 2013). Therefore these studies indicate a possible dual role of hypoxia in regulating 

cardiomyocyte proliferation. 

 Growth restriction in utero can also lead to reduced oxygen supply to the fetus. 

Intrauterine growth restriction (IUGR) is associated with hypoxia (Bae et al., 2003; 

Moore, 2003; D. Xiao, Ducsay, & Zhang, 2000; L. Zhang, 2005) and has been shown to 

reduce the percentage of binucleate cardiomyocytes (Bubb et al., 2007). Furthermore, 

Morrison et al. showed that placental restriction leads to chronic fetal hypoxia, which 

results in increased percentage of mononucleate cardiomyocytes in the fetal sheep. The 
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restricted fetuses have smaller individual cardiomyocytes but when compared relative to 

heart weight, the cells were larger (Morrison et al., 2007).  The results of this study 

suggest that placental restriction-induced hypoxia reduces the total number of 

cardiomyocytes in the heart. Other studies demonstrate that after 20 days of 

uteroplacental insufficiency, the percentage of binucleate cardiomyocytes as well as cell 

cycle activity decreased.  In addition, fewer mononucleate cardiomyocytes expressed Ki-

67, indicating reduced proliferative capacity of these hearts (Louey, Jonker, Giraud, & 

Thornburg, 2007). 

 Therefore studies show support for both a positive and negative effect of hypoxia 

on cardiomyocyte proliferation. This could be due to the differences in the age and 

species of animal used, as well as methods of hypoxia induction and proliferation 

quantification. One possible explanation for hypoxia’s effect on binucleation is that 

cardiomyocytes respond by initiating proliferation but are unable to complete cell 

division and thus become binucleate. Altogether, studies give evidence that hypoxia is a 

major fetal stressor capable of modulating cardiomyocyte endowment in the heart—

ultimately influencing cardiac health throughout life. However the downstream regulators 

and molecular mechanism of hypoxia-induced terminal differentiation are not yet known. 

 

Endothelin-1 

Endothelins and Endothelin Receptors 

Endothelin (ET) is a 21-amino acid peptide involved in regulating vascular 

homeostasis. The endothelium-derived peptide was originally isolated from porcine aortic 

endothelial cells in 1988 (Yanagisawa, Inoue, et al., 1988). This original peptide was 
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identified as endothelin-1 with the subsequent discoveries of two other isoforms, 

endothelin-2 (ET-2) and endothelin-3 (ET-3) (Inoue et al., 1989). Endothelin-1 (ET-1) is 

currently the most potent vasoconstrictor known (Kawanabe & Nauli, 2011; Yanagisawa, 

Inoue, et al., 1988; Yanagisawa, Kurihara, et al., 1988) and is mainly secreted from 

vascular endothelial cells (Agapitov & Haynes, 2002). The ET-2 peptide differs from ET-

1 by two amino acids whereas the ET-3 peptide differs by six amino acids (Kedzierski & 

Yanagisawa, 2001).  

As shown in Figure 1.2, the endothelin synthesis pathway begins with the 

transcription of pre-proendothelin mRNA that is then translated into pre-proendothelin, a 

212-residue peptide (Agapitov & Haynes, 2002; Barton & Yanagisawa, 2008). A short 

secretary sequence is cleaved before furin-like proteases process the prepro-ET into the 

38 to 39-residue peptide, big-endothelin (Agapitov & Haynes, 2002; Barton & 

Yanagisawa, 2008). A number of endothelin converting enzyme isoforms (ECE-1, ECE-

2, ECE-3) cleave the big-ET into the functional 21-residue peptide, endothelin (Agapitov 

& Haynes, 2002; Barton & Yanagisawa, 2008; Gao & Raj, 2010).  ECE-1 is mainly 

found in endothelial cells and ECE-2 is often found in neurons. These two converting 

enzymes have a higher affinity for big ET-1 versus big ET-2 or big ET-3 (Kedzierski & 

Yanagisawa, 2001).  In addition to ECE, it has been shown that chymase and neprilysin 

can convert big-ET-1 into its active form ET-1 (Simard et al., 2009). Furthermore, matrix 

metalloproteinase-2 (MMP-2, gelatinase A) can also convert human big ET-1 (1-38) to 

ET-1 (1-32), which preferentially acts on ETBR (Fernandez-Patron, Radomski, & 

Davidge, 1999; Jeyabalan et al., 2003). 
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Figure 1.2. Endothelin synthesis and action pathway. Endothelin is mainly secreted by 
endothelial cells and can act on either the ETA- or ETB- receptor to elicit a given response. 
ET: endothelin; ECE: endothelin-converting enzyme; NOS: nitric oxide synthase; NO: 
nitric oxide; ETAR: endothelin A receptor; ETB1R: endothelin receptor B subtype 1; ETB2R: 
endothelin receptor B subtype 2.!
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The ET peptides are strong vasoactive substances that can bind one of two types 

of G-protein coupled receptors, the ETA- or ETB-receptor. The ETA-receptor (ETAR) is 

found in vascular smooth muscle (Hosoda et al., 1991) and therefore associated with the 

vasoconstrictor effects of ET. It has the highest binding affinity for ET-1 followed by ET-

2 and then ET-3 (Arai, Hori, Aramori, Ohkubo, & Nakanishi, 1990; Kawanabe & Nauli, 

2011; Sakurai et al., 1990; Yanagisawa, 1994). All three isoforms have equal binding 

affinity for the ETB-receptor (ETBR), which is involved in both vasoconstriction and 

vasodilatation effects (Arai et al., 1990; Kawanabe & Nauli, 2011; Perreault & Coceani, 

2003; Sakurai et al., 1990; Yanagisawa, 1994).  Due to the ETBR’s involvement in 

constriction and dilatation, it has been categorized into two subtypes, ETB1 and ETB2 

(Kedzierski & Yanagisawa, 2001; Warner, Allcock, Corder, & Vane, 1993). The ETB1 

subtype is mainly found in endothelial cells (Sakurai et al., 1990) regulating the 

vasodilator effect and ETB2 is found predominantly in vascular smooth muscle cells (Arai 

et al., 1990) exerting vasoconstrictor effects along with ETAR. The ETBR is also involved 

in the clearance of endothelins from tissues (Wilkes, Susin, & Mento, 1993). In 

cardiomyocytes, the ETA-receptor is the predominant subtype (Kohan, Rossi, Inscho, & 

Pollock, 2011), and has been implicated to play a role in regulating proliferation 

(Agapitov & Haynes, 2002; Goldie, 1999; Komuro et al., 1988). In cardiomyocytes, the 

ETA-receptor is the predominant subtype (Kohan et al., 2011), and has been implicated to 

play a role in regulating proliferation (Agapitov & Haynes, 2002; Goldie, 1999; Komuro 

et al., 1988). 

The ET-1 peptide is an autocoid (Wilkes et al., 1993) being that it acts in an 

autocrine or paracrine fashion rather than as an endocrine (Agapitov & Haynes, 2002; 
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Rubanyi & Polokoff, 1994; Wagner et al., 1992). Therefore the local tissue 

concentrations are much higher than the low picomolar concentration typically found in 

circulation. The endothelial cell is the main site of ET-1 production (Inoue et al., 1989), 

but cardiomyocytes are also known to secrete ET-1 (Kedzierski & Yanagisawa, 2001).  

ET-2 is secreted in endothelial cells, heart and kidney (Agapitov & Haynes, 2002), while 

ET-3 is not produced in endothelial cells (Howard, Plumpton, & Davenport, 1992) but 

rather in the endocrine, gastrointestinal, and central nervous systems (Agapitov & 

Haynes, 2002). Endothelin is important in normal physiological processes, especially 

during growth and development.  The general effect of ET is an increase in both blood 

pressure and vascular tone (Agapitov & Haynes, 2002; Kelly & Whitworth, 1999), as 

well as reducing cardiac output and heart rate (Kelly & Whitworth, 1999). Although 

essential to the maintenance of vascular homeostasis, ET-1 can be upregulated in several 

pathophysiological conditions, such as hypertension, preeclampsia, and heart failure 

(George & Granger, 2011; Rautureau & Schiffrin, 2012; Wei et al., 1994; Zolk et al., 

1999). ET-1 can act as a growth factor and play a key role in tissue development and 

differentiation and induce proliferation and vascular smooth muscle cell growth (Goldie, 

1999). An upregulation of ET-1 (Ponicke et al., 1998; Zolk et al., 1999) and ETAR and a 

downregulation of ETBR were observed in the myocardium of human end-stage heart 

failure patients (Zolk et al., 1999). There are many stimuli for the secretion of ET-1 

including: vasoactive hormones, growth factors, hypoxia, shear stress, ischemia, 

lipoproteins, free radicals, endotoxin and cyclosporine (Gao & Raj, 2010). Endothelium-

derived NO, vasodilators, natriuretic peptides, heparin and prostaglandins, can inhibit 

ET-1 production (Agapitov & Haynes, 2002). 
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Hypoxia Induction of Endothelin-1 

Hypoxia is a strong inducer of ET expression via hypoxia-inducible factor 1-alpha 

(HIF-1α) (Yamashita, Discher, Hu, Bishopric, & Webster, 2001). HIF-1α is expressed 

constitutively but becomes degraded in a normoxic environment. However, in a low-

oxygen environment, the enzymes leading to its degradation are inhibited and thus HIF-

1α can bind to response elements on genes.   

The ET-1 gene promoter contains one such hypoxia response element (Hu, 

Discher, Bishopric, & Webster, 1998; Kakinuma et al., 2001; Minchenko & Caro, 2000). 

Additionally, previous studies demonstrated a negative correlation between pO2 and 

plasma ET-1 levels in fetal goats (Yamada et al., 2001) as well as pO2 and ET-1 levels in 

human amniotic fluid (Ostlund, Lindholm, Hemsen, & Fried, 2000). ET-1 mRNA levels 

were significantly increased in rat lung (H. Li et al., 1994) and placentas (Thaete, Jilling, 

Synowiec, Khan, & Neerhof, 2007) exposed to hypoxia. The cardiomyocyte is both a site 

of synthesis and action of ET-1 (Kedzierski & Yanagisawa, 2001; Kohan et al., 2011), 

suggesting a localized role for hypoxia-induced ET-1 action in the heart. 

 

Central Hypothesis 

The central hypothesis of our project is that hypoxia induces ET-1 production, 

which stimulates a premature terminal differentiation of cardiomyocytes in the 

developing heart via epigenetic modifications. 

 

Significance 

 It has been well established that an adverse intrauterine environment predisposes 
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an individual to an increased risk of cardiovascular disease (Barker & Osmond, 1986; 

Bateson et al., 2004; Gluckman, Hanson, Cooper, & Thornburg, 2008). Hypoxia is a 

major environmental stress to the developing heart and fetus. A low oxygen environment 

is a foremost cause of intrauterine growth restriction (Jensen & Moore, 1997; 

McCullough et al., 1977) and poor organ development. The full impact and mechanism 

by which hypoxia alters heart development is not yet known. However it is known that 

the number of cardiomyocytes endowed in the heart is determined during fetal and 

neonatal development. As the heart matures, the cardiomyocytes undergo a terminal 

differentiation process and lose their proliferative capacity. Thus the number of 

cardiomyocytes in the heart is determined during the first two weeks of neonatal life in 

rats (Botting et al., 2012), a number that persists throughout adulthood. Cardiomyocytes 

are the functional unit of the heart, and therefore the number of viable myocytes will 

dictate cardiac function. By modifying cardiomyocyte endowment via a premature 

terminal differentiation, overall cardiac function may be compromised. We expect 

findings from our study to reveal a novel role of ET-1 in the hypoxia-induced premature 

cardiomyocyte maturation. Moreover, considering the crucial role the intrauterine 

environment plays in altering development, the possibility that epigenetic mechanisms 

are involved in the premature transition provides a mechanistic understanding worthy of 

future investigation. 
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CHAPTER TWO 
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Abstract 

Hypoxia is a major stress on fetal development and leads to induction of 

endothelin-1 (ET-1) expression. We tested the hypothesis that ET-1 stimulates the 

terminal differentiation of cardiomyocytes from mononucleate to binucleate in the 

developing heart. Hypoxia (10.5% O2) treatment of pregnant rats from day 15 to day 21 

resulted in a significant increase in prepro-ET-1 mRNA expression in fetal hearts. ET-1 

ex vivo treatment of fetal rat cardiomyocytes increased percent binucleate cells and 

decreased Ki-67 expression, a marker for proliferation, under both control and hypoxic 

conditions. Hypoxia alone decreased Ki-67 expression and in conjunction with ET-1 

treatment decreased cardiomyocyte size. PD145065, a non-selective ET-receptor 

antagonist, blocked the changes in binucleation and proliferation caused by ET-1. DNA 

methylation in fetal cardiomyocytes was significantly increased with ET-1 treatment, 

which was blocked by 5-aza-2’-deoxycytidine, a DNA methylation inhibitor. In addition, 

5-aza-2’-deoxycytidine treatment abrogated the increase in binucleation and decrease in 

proliferation induced by ET-1. Hypoxic stress and synthesis of ET-1 increases DNA 

methylation and promotes terminal differentiation of cardiomyocytes in the developing 

heart. This premature exit of the cell cycle may lead to a reduced cardiomyocyte 

endowment in the heart and have a negative impact on cardiac function. 

 
 

Introduction 
 

Heart disease is the leading cause of death in the United States. It has been well 

established that an adverse intrauterine environment increases vulnerability to 

cardiovascular disease later in life (Barker, 1995; Barker & Osmond, 1986). 
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Environmental factors during the critical period of fetal development can influence the 

maturation of organs, such as the heart. Involved in this maturation is a transition of 

cardiomyocytes from a mononucleate to a binucleate phenotype. This normal transition 

occurs during fetal and early postnatal life, and is attributed to the uncoupling of 

cytokinesis from karyokinesis (Clubb & Bishop, 1984). Mononucleate cardiomyocytes 

retain the ability to proliferate whereas the binucleate cells do not, and this is because 

they have exited the cell cycle and become terminally differentiated (Ahuja, Sdek, et al., 

2007). Alterations to the timing of this critical transition may have long-term 

consequences on heart development and function throughout life. 

Hypoxia is a major stress to the fetal development. Our previous studies have 

shown that an in vivo rat model of maternal hypoxia results in fetal cardiomyocytes 

prematurely exiting the cell cycle (Bae et al., 2003; Tong et al., 2013; Tong et al., 2011). 

This early-onset transition leads to fewer but larger cardiomyocytes as a result of 

increased binucleation and hypertrophy, and decreased proliferation of the cells. The 

timing of this transition is critical in determining the number of cardiomyocytes endowed 

in the heart for a lifetime. Whereas these in vivo studies showed the effect of hypoxia on 

fetal heart development, the mechanisms remain unknown. 

Hypoxia is a known inducer of endothelin-1 (ET-1) expression (Hashiguchi et al., 

1991; Ostlund et al., 2000; Yamada et al., 2001; Yamashita et al., 2001). ET-1 plays an 

important role in regulating cell cycle, and the cardiomyocyte is both a site of synthesis 

and action of ET-1 (Kedzierski & Yanagisawa, 2001; Kohan et al., 2011), suggesting a 

localized role for hypoxia-induced ET-1 action in the heart. Thus, the present study tested 

the hypothesis that ET-1 induces a premature cardiomyocyte transition in the developing 
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heart. Given a recent finding that the terminal differentiation of cardiomyocytes is 

characterized by a hypermethylated genome and compact chromatin (Kou et al., 2010), 

we further tested the hypothesis that ET-1 promotes cardiomyocyte terminal 

differentiation by an increase in DNA methylation. Herein, we present evidence that ET-

1 via action of ET-1 receptors stimulates the premature transition of fetal 

cardiomyocytes, characterized by increased binucleation and decreased proliferation. 

DNA methylation of fetal cardiomyocytes is increased with ET-1 treatment, and the ET-

1-induced changes in binucleation and proliferation are blocked by a DNA methylation 

inhibitor 5-aza-2’–deoxycytidine. Altogether the results suggest that epigenetic regulation 

via DNA methylation is involved in the cardiomyocyte transition stimulated by increased 

synthesis of ET-1. 

 

Materials and Methods 

Experimental Animals 

Time-dated pregnant Sprague-Dawley rats were purchased from Charles River 

Laboratories (Portage, MI) and divided into two groups: (i) normoxic control and (ii) 

10.5% O2 hypoxia treatment from gestational day 15 to 21, as previously described 

(Patterson, Xiao, Xiong, Dixon, & Zhang, 2012; Xue, Dasgupta, Chen, & Zhang, 2011). 

Hearts were isolated from day 21 fetuses. To isolate hearts, pregnant rats were 

anesthetized with isoflurane, and adequate anesthesia was determined by loss of pedal 

withdrawal reflex. Fetuses were removed and pregnant rats killed by removing the hearts. 

Fetal hearts were isolated for the studies. All procedures and protocols were approved by 
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the Institutional Animal Care and Use Committee and followed the guidelines by US 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

 

Primary Cardiomyocyte Culture and Treatment 

Cardiomyocytes were isolated from normoxic day 21 fetal rats as previously 

described (Y. Xiao, He, Gilbert, & Zhang, 2000). Cells were cultured in Hyclone 

Medium 199 (Thermo Scientific) supplemented with 10% fetal bovine serum (Gemini 

Bio-Products) and 1% antibiotics (10,000 I.U./mL penicillin, 10,000 µg/mL 

streptomycin) at 37°C in 95% air/5% CO2. BrdU (0.1mM) was added to the medium to 

prevent fibroblast proliferation. Within three days of culture, the cells formed a 

monolayer with synchronized beating, characteristic of viable cardiomyocytes. 

Experiments were performed at 70-80% confluency. Cells were treated under normoxia 

(21% O2) or hypoxia (1% O2) for 24 hours, in the absence or presence of ET-1 (Sigma; 

10 nM), PD145065 (Calbiochem; 10 nM), or 5-aza-2’-deoxycytidine (Sigma; 10 µM). 

 

Real-Time Reverse Transcription-Polymerase Chain Reaction 

RNA was isolated from the fetal hearts and prepro-ET-1 mRNA abundance was 

determined by real-time RT-PCR using Icycler Thermal cycler (Bio-Rad), as described 

previously (Xue et al., 2011). Reverse transcription and cDNA synthesis was performed 

using SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen). The 

primers are 5’-CTAGGTCTAAGCGATCCTTGAA-3’ (forward) and 5’-

CTTGATGCTGTTGCTGATGG-3’!(reverse). PCR was performed in triplicate, and 

threshold cycle numbers were averaged. 
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Immunocytochemistry 

Primary cardiomyocytes were double stained with alpha-actinin, a cardiomyocyte 

marker, and Ki-67, a proliferation marker as described previously (Tong et al., 2013).  

Cardiomyocytes were plated on coverslips and fixed with acetone for 10 minutes. The 

cells were blocked with 1% bovine serum albumin for 1 hour at room temperature before 

incubation with the primary antibodies: mouse anti-α-sarcomeric actinin (Sigma, 

St.Louis, MO) (1:200) and rabbit anti-Ki-67 (Abcam, Cambridge, MA) (1:100) in 4°C 

overnight. The samples were incubated with the secondary antibodies: anti-mouse FITC-

conjugated and anti-rabbit Texas Red-conjugated antibodies for 1 hour at room 

temperature. Nuclei were stained with Hoescht (Sigma) for 1 minute. The 

immunofluorescence staining was assessed using a Zeiss Axio Imager.A1 microscope 

and quantitative analysis was carried out using Image J software.  Percent binucleation, 

Ki-67 expression, and cell size were measured. 

 

5-mC DNA Enzyme-linked Immunosorbent Assay (ELISA) 

 DNA methylation in primary fetal cardiomyocytes was determined by measuring 

5-methylcytosine (5-mC) using a 5-mC DNA ELISA kit (Zymo Research). The kit 

features a unique anti-5-mC monoclonal antibody that is both sensitive and specific for 5-

mC. The protocol for measurement of 5-mC level is described in the manufacturer’s 

instruction. Briefly, 100 ng of genomic DNA from cardiomyocytes and standard controls 

provided by the kit was denatured and used to coat the plate wells with 5-mC coating 

buffer. After incubation at 37°C for 1 hour, the wells were washed with 5-mC ELISA 

buffer and then an antibody mix consisting of anti-5-mC and a secondary antibody was 
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added to each well. The plate was covered with foil and incubated at 37°C for 1 hour. 

After washed out the antibody mix from the wells with 5-mC ELISA buffer, a HRP 

developer was added to each well and incubated at room temperature for 1 hour. The 

absorbance at 405 nm was measured using an ELISA plate reader. The percent 5-mC was 

calculated using the second-order regression equation of the standard curve that was 

constructed with negative control and positive controls in the same experiment. 

 

Statistical Analysis 

Data are expressed as means ±!SEM. Statistical analysis (p < 0.05) was 

determined by analysis of variance followed by Neuman-Keuls post hoc test or Student’s 

t test, where appropriate. 

 

Results 

Maternal Hypoxia Increased Prepro-ET-1 mRNA in Fetal 

Hearts 

Animals were exposed to maternal hypoxia from gestational day 15-21; at the end 

of treatment hearts were isolated from day 21 fetal rats. Figure 2.1 demonstrated a 

significant increase in prepro-ET-1 mRNA abundance in fetal hearts exposed to 10.5% 

O2, as compared to the normoxic control (21% O2). 
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Figure 2.1.  Effect of hypoxia on prepro-ET1 mRNA in the fetal heart.  Hearts 
were isolated from near-term fetuses of pregnant rats treated with control or 
hypoxia. mRNA abundance of prepro-ET-1 was determined by real-time RT-PCR. 
Data are means ± SEM. * P < 0.05, hypoxia vs. control. n = 7-8!
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ET-1 Stimulated Binucleation and Inhibited Proliferation of Fetal 

Cardiomyocytes 

The morphology of mononucleate cells and binucleate cells of primary fetal 

cardiomyocytes are shown in Figure 2.2A. Whereas the basal levels of binucleate 

cardiomyocytes in fetal hearts were low, the treatment of cardiomyocytes with ET-1 

resulted in a significant increase in percent binucleation, as compared to the control in 

both normoxic and hypoxic conditions (Figure 2.2A). Hypoxia alone in the absence of 

ET-1 had a slight increase in percent binucleation but it did not reach a significant level, 

as compared to the normoxic control. Percent Ki-67 positive cells, indicating 

proliferation, in ET-1 treated cardiomyocytes were significantly decreased in both 

normoxia and hypoxia (Figure 2.2B). Unlike the effect of binucleation, hypoxia alone in 

the absence of ET-1 significantly decreased percent of Ki-67 positive cells (Figure 2.2B). 
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Figure 2.2.  Effect of ET-1 on binucleation and proliferation of fetal 
cardiomyocytes. Cardiomyocytes isolated from fetal hearts were treated 
with ET-1 (10 nM) under normoxic control (21% O2) or hypoxic (1% O2) 
conditions for 24 h.  A. Morphology of mononucleate and binucleate fetal 
cardiomyocytes. B. Binucleation result. C. Proliferation result.  Data are 
means ± SEM. * P < 0.05, +ET-1 vs. -ET-1; †!P < 0.05, hypoxia vs. control. 
n = 5!
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Interaction of ET-1 and Hypoxia Decreased Cardiomyocyte Size 

Neither ET-1 nor hypoxia alone had a significant effect on cardiomyocyte size 

(Figure 2.3). However, cardiomyocyte size was significantly decreased with the ET-1 

treatment under the hypoxic condition (Figure 2.3). 
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Figure 2.3.  Effect of ET-1 on fetal cardiomyocyte size.  Cardiomyocytes 
isolated from fetal hearts were treated with ET-1 (10 nM) under normoxic 
control (21% O2) or hypoxic (1% O2) conditions for 24 h. Data are means ± 
SEM. * P < 0.05, +ET-1 vs. -ET-1.  n = 7-10!
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PD145065 Inhibited the Effects of ET-1 

PD145065, a non-selective ET-receptor antagonist, blocked the effects of ET-1 on 

percent binucleation (Figure 2.4A) and Ki-67 expression (Figure 2.4B) in fetal 

cardiomyocytes. PD145065 in the absence of ET-1 had no significant effect on either 

binucleation or proliferation of cardiomyocytes. 
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Figure 2.4.  PD145065 abrogates ET-1-mediated effects on binucleation 
and proliferation of fetal cardiomyocytes.  Cardiomyocytes isolated from 
fetal hearts were treated with ET-1 (10 nM) for 24 h in the absence or 
presence of PD145065 (10 nM). A. Binucleation result. B. Proliferation 
result.  * P < 0.05, ET-1 vs. control. n = 5!
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ET-1 Increased DNA Methylation in Fetal Cardiomyocytes 

ET-1 treatment of fetal cardiomyocytes resulted in a significant increase in DNA 

methylation, seen as increased percent 5-mC in Figure 2.5. In the presence of 5-aza-2’-

deoxycytidine, a DNA methylation inhibitor, the effects of ET-1 were blocked (Figure 

2.5). 
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Figure 2.5. 5-Aza-2’-deoxycytidine blocks ET-1-increased DNA methylation in 
fetal cardiomyocytes.  Cardiomyocytes isolated from fetal hearts were treated with 
ET-1 (10 nM) for 24 h in the absence or presence of 5-aza-2’-deoxycytidine (5-Aza, 
10 µM). * P < 0.05, ET-1 vs. control. n = 5!



www.manaraa.com

 

38!

5-Aza-2’-deoxycytidine Abrogated the Effects of ET-1 on Fetal 

Cardiomyocytes 

In the presence of 5-aza-2’-deoxycytidine, ET-1-induced stimulation of 

binucleation (Figure 2.6A) and inhibition of Ki-67 expression (Figure 2.6B) in fetal 

cardiomyocytes were blocked. Whereas 5-aza-2’-deoxycytidine alone in the absence of 

ET-1 had a tendency to increase cardiomyocyte binucleation, this effect did not reach the 

significant level (Figure 2.6A). 
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Figure 2.6. 5-Aza-2’-deoxycytidine abrogates ET-1-mediated effects on 
binucleation and proliferation of fetal cardiomyocytes.  Cardiomyocytes 
isolated from fetal hearts were treated with ET-1 (10 nM) for 24 h in the 
absence or presence of 5-aza-2’-deoxycytidine (5-Aza, 10 µM). A. Binucleation 
result.  B. Proliferation result.  * P < 0.05, ET-1 vs. control. n = 5!
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Discussion 

The present study provides evidence that ET-1 inhibited proliferation and induced 

the premature transition of fetal cardiomyocytes from a mononucleate to a binucleate 

phenotype, indicative of terminally differentiated cardiomyocytes. Hypoxia alone did not 

elicit the same effects as ET-1. An ET-receptor antagonist, PD145065 blocked the ET-1-

induced increase in binucleation and decrease in proliferation. Additionally, we 

demonstrated that ET-1 treatment increased DNA methylation in fetal cardiomyocytes, 

and a DNA methylation inhibitor, 5-aza-2’-deoxycytidine abrogated ET-1-induced DNA 

methylation and terminal differentiation of cardiomyocytes. 

  The ET-1 synthesis pathway begins with the transcription of prepro-ET-1 mRNA, 

which is translated into prepro-ET-1. A series of enzymatic cleavages produce Big-ET-1 

and the matured ET-1, a 21-amino acid peptide (Barton & Yanagisawa, 2008). Several 

studies have reported the regulation of ET-1 synthesis by hypoxia, including the 

identification of a HIF-1 binding site on the prepro-ET-1 gene promoter (Hu et al., 1998; 

Minchenko & Caro, 2000). Specifically in cardiomyocytes, a HIF-1α!binding site has 

been identified on the 5’-promoter region of the prepro-ET-1 gene (Kakinuma et al., 

2001). Additionally, previous studies demonstrated a negative correlation between pO2 

and plasma ET-1 levels in fetal goats (Yamada et al., 2001) as well as pO2 and ET-1 

levels in human amniotic fluid (Ostlund et al., 2000). ET-1 mRNA levels were 

significantly increased in rat lung (H. Li et al., 1994) and placentas (Thaete et al., 2007) 

exposed to hypoxia. In agreement with these findings, the present study demonstrated a 

significant increase in prepro-ET-1 mRNA in the fetal rat heart resulting from in utero 



www.manaraa.com

 

41!

hypoxia, suggesting a local paracrine action of ET-1 in hypoxia-mediated effect on the 

fetal heart. 

Physiological circulating levels of ET-1 are in the low picomolar range (Kohan et 

al., 2011; Nakas-Icindic, Zaciragic, Hadzovic, & Avdagic, 2004) and may be 

significantly upregulated in pathophysiological conditions, such as hypoxia, heart failure, 

hypertension, and preeclampsia (George & Granger, 2011; Rautureau & Schiffrin, 2012; 

Wei et al., 1994; Zolk et al., 1999). ET-1 acts in a paracrine and/or autocrine fashion and 

therefore tissue concentrations are significantly higher than those in the circulation 

(Rubanyi & Polokoff, 1994). The concentration of ET-1 (10 nM) was chosen based on 

other studies (Ito et al., 1991; X. Li et al., 2009; Majumdar et al., 2009; Yu et al., 2013) 

and the rationale that ET-1 levels in the local tissue are much greater than in circulation. 

In the present study, we found that fetal rat cardiomyocytes exposed to elevated levels of 

ET-1 exhibited both increased binucleation and decreased proliferation. The binucleate 

cells are unable to proliferate and thus become terminally differentiated. In the rat heart, 

normal transition of cardiomyocytes to the binucleate form starts at birth and lasts during 

the first two weeks of postnatal life (Clubb & Bishop, 1984). Therefore, the accelerated 

transition in the fetal heart due to increased levels of ET-1 has long-term implications. A 

premature transition of terminal differentiation may result in a reduced number of 

cardiomyocytes and altered cardiac growth after birth. As previous work has shown, 

hypoxia causes a premature exit of cell cycle in fetal cardiomyocytes (Bae et al., 2003), 

but the downstream regulators are not known. 

The present study demonstrated that ET-1 increased the percent of binucleate 

cells independent of hypoxia, and hypoxia alone had no significant effect on the 
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binucleation of cardiomyocytes. These findings suggest a lack of direct effect of hypoxia 

on the cardiomyocyte transition and provide evidence that ET-1 is a key downstream 

regulator of the premature exit of cell cycle in the fetal heart, observed in vivo in fetal 

hypoxia (Bae et al., 2003). It is important to note that while cardiomyocytes have the 

ability to produce ET-1, endothelial cells contribute a large portion of its production. The 

isolated cardiomyocytes may not provide the full mechanism for hypoxia to produce a 

sufficient ET-1 response and the subsequent effects on binucleation and cell size. The 

finding that PD145065 blocked the ET-1-induced increase in binucleation and decrease 

in proliferation of fetal cardiomyocytes indicates the ET-1 receptor-mediated effects. 

PD145065 is a non-selective ETA- and ETB-receptor antagonist and has been shown to 

block the effect of ET-1 via the ET-receptors (Ceccarelli et al., 2003; Doherty et al., 

1993; Drimal et al., 2003). 

The finding that hypoxia decreased proliferation of fetal cardiomyocytes is in 

agreement with previous reports (Bae et al., 2003; Tong et al., 2013; Tong et al., 2011). 

Prior studies have shown that hypoxia promotes HIF-1α!association with HIF-1β!and 

enhances the expression of cyclin-dependent kinase inhibitors (CKIs), which in turn 

inhibits cell cycle proteins and decreases cell proliferation (Goda, Ryan, et al., 2003). It is 

also suggested that HIF-1 regulates the G1/S phase transition by regulating the expression 

of cyclin E, a required factor for the transition (Goda, Dozier, & Johnson, 2003). Hypoxia 

has also been shown to induce expression of metalloproteinase inhibitors (TIMPs) that 

may have an inhibitory or stimulatory effect on cellular proliferation depending on the 

subtype and tissue involved (Tong & Zhang, 2012). In the heart, TIMP-3 is highly 

expressed and shown to inhibit proliferation in neonatal mouse cardiomyocytes 
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(Hammoud et al., 2007); a result of up-regulated p27 expression via the EGFR-JNK-SP-1 

mediated pathway (Hammoud, Burger, Lu, & Feng, 2009). Although TIMP-3 and -4 are 

upregulated by hypoxia, their promoters do not contain HIF-responsive elements. Thus 

the regulation of these inhibitors and the subsequent effects on proliferation appear to be 

mediated by other genes that contain HIF-responsive elements.  

ET-1 is one possible candidate considering it both contains a HIF-response 

element in its promoter (Hu et al., 1998; Minchenko & Caro, 2000) and has been shown 

to regulate proliferation (Bae et al., 2003; Tong et al., 2013; Tong et al., 2011; F. X. 

Zhang et al., 2007).  The finding that, unlike ET-1, hypoxia had no significant effect on 

binucleation suggests that hypoxia-induced effect on proliferation was not mediated by 

ET-1, but rather by an independent and direct effect of hypoxia. The synergistic effect of 

hypoxia and ET-1 more closely mimics the physiological system as a whole. Ki-67 

expression and cell size were significantly decreased by hypoxia and ET-1 treatment 

together. These results agree with previous reports, from our lab and others, that hypoxia 

alone had a direct effect in decreasing proliferation of cardiomyocytes (Bae et al., 2003; 

Tong et al., 2013; Tong et al., 2011; F. X. Zhang et al., 2007).  

A change in cell size was only observed with the addition of both ET-1 and 

hypoxia. Both ET-1 and hypoxia are known hypertrophic factors (Ito et al., 1996; 

Shubeita et al., 1990; Suzuki, Hoshi, & Mitsui, 1990). In neonatal rat cardiomyocytes, 

mild hypoxia (10% O2) has been found to induce hypertrophy (Chu et al., 2012; Ito et al., 

1996). However more severe hypoxia (1% O2), as was done in our study, appears to elicit 

the opposite effect leading to a reduction in cell size. Thus the severity at which hypoxia 

is induced likely has a differential effect on changes in cellular size. ET-1 has also been 
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shown to stimulate cardiomyocytes to proliferate, and in the case of terminally 

differentiated cells it leads to hypertrophy (Cullingford et al., 2008; Ito et al., 1991). 

Furthermore previous studies have found that hypertrophic growth is initially observed in 

the first week of postnatal life (Clubb & Bishop, 1984; F. Li et al., 1996). Given that fetal 

and neonatal hearts are at very different developmental stages and experience very 

different oxygen tensions, it is possible that cardiomyocytes of the fetal heart respond 

differently to environmental cues such as hypoxia as that seen in the neonatal 

cardiomyocytes.  

The finding that 5-aza-2’-deoxycytidine blocked the ET-1-induced increase in 

binucleation and decrease in proliferation is intriguing and suggests that ET-1 induces 

methylation of DNA as a means of involvement in cardiomyocyte terminal differentiation 

and suppression of proliferation. Whereas the present study focused on the downstream 

mechanisms of ET-1 in regulating terminal differentiation of cardiomyocytes, whether 

DNA methylation plays a role in the hypoxia-mediated direct effect on proliferation 

remains to be determined.  5-Aza-2’-deoxycytidine has been widely used as a DNA 

methylation inhibitor, and in the concentration range of 1 to 30 µM it inhibits DNA 

methylation both globally and at specific sites of DNA (Meyer, Zhang, & Zhang, 2009; 

Patterson et al., 2010; Vallender & Lahn, 2006; F. Xiong, Xiao, & Zhang, 2012).  In the 

present study, we found that ET-1 significantly increased global DNA methylation in 

cardiomyocytes and this was blocked by 5-aza-2’-deoxycytidine. Epigenetic mechanism 

of DNA methylation acts to silence gene transcription, typically at cytosine residues 

within CpG dinucleotides. A previous study showed that methylation gradually increases 

over the course of development in neonatal cardiomyocytes (Kou et al., 2010), the same 
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time frame for which binucleation occurs. Furthermore, expression of DNA 

methyltransferases involved in de novo DNA methylation (DNMT3a and DNMT3b) was 

significantly increased during the first 90 days of postnatal life.  Inhibition of methylation 

with 5-aza-2’-deoxycytidine during neonatal day 7 and 10 resulted in a marked increase 

in DNA synthesis and delayed maturation (Kou et al., 2010). It is well known that 

environmental cues during fetal development can profoundly alter the structure and 

function of an organ via epigenetic regulation. Particularly in the heart, cardiac function 

is dependent in part on cardiomyocyte number. Thus hypoxia-mediated ET-1 may signal 

through epigenetic mechanisms to negatively impact cardiomyocyte development. The 

present study suggests that DNA methylation is an epigenetic mechanism through which 

ET-1 stimulates cardiomyocyte transition of terminal differentiation. Ultimately, this may 

lead to reduced total cardiomyocyte number in the heart. Many studies have 

demonstrated that genes associated with the cell cycle and cytokinesis are involved in this 

transition process (Ahuja, Perriard, et al., 2007; Chen et al., 2004; Engel, Schebesta, & 

Keating, 2006; Y. Liu et al., 2007; Sdek et al., 2011). Adult cardiomyocytes from 

knockout mice lacking Rb and p130 show a decrease in heterochromatin and an increase 

in proliferation associated with derepression of cell cycle genes (Sdek et al., 2011). These 

genes may be differentially regulated by changes in methylation patterns thus altering the 

cell cycle and cytokinesis. Future studies will have to elucidate the methylation status of 

specific genes during this transition phase. 

The present study identifies a novel mechanism of ET-1-induced 

hypermethylation as a downstream regulator of hypoxia-mediated cardiomyocyte 

transition from mononucleate to binucleate cells in the developing heart.  Cardiomyocyte 
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endowment is determined during fetal and early postnatal development, when most 

cardiomyocytes become binucleate and cease to proliferate (Botting et al., 2012; 

Thornburg et al., 2011). Given that hypoxia is one of the most important and clinically 

relevant stresses to the fetal development, and that fetal hypoxia results in fewer but 

larger cardiomyocytes and increases the susceptibility of heart to ischemic injury in 

offspring (Bae et al., 2003; G. Li, Bae, & Zhang, 2004; G. Li et al., 2003; Xu, Williams, 

O'Brien, & Davidge, 2006), the present study provides a mechanistic understanding 

worthy of further investigation in humans. 
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Abstract 

In the developing heart, cardiomyocytes undergo terminal differentiation during a 

critical window around birth. Hypoxia is a major stress to preterm infants, yet its effect 

on the development and maturation of the heart remains unknown. We tested the 

hypothesis in a rat model that newborn anoxia accelerates cardiomyocyte terminal 

differentiation and results in reduced cardiomyocyte endowment in the developing heart 

via an endothelin-1-dependent mechanism. Newborn rats were exposed to anoxia twice 

daily from postnatal day 1 to 3, and hearts were isolated and studied at postnatal day 4 

(P4), 7 (P7), and 14 (P14). Anoxia significantly increased HIF-1α protein expression and 

pre-proET-1 mRNA abundance in P4 neonatal hearts. Cardiomyocyte proliferation was 

significantly decreased by anoxia in P4 and P7, resulting in a significant reduction of 

cardiomyocyte number per heart weight in the P14 neonates. Furthermore, the expression 

of cyclin D2 was significantly decreased due to anoxia, while p27 expression was 

increased.  Anoxia has no significant effect on cardiomyocyte binucleation or myocyte 

size. Consistently, prenatal hypoxia significantly decreased cardiomyocyte proliferation 

but had no effect on binucleation in the fetal heart. Newborn administration of 

PD156707, an ETA-receptor antagonist, significantly increased cardiomyocyte 

proliferation at P4 and cell size at P7, resulting in an increase in the heart to body weight 

ratio in P7 neonates. In addition, PD156707 abrogated the anoxia-mediated effects. The 

results suggest that hypoxia and anoxia via activation of endothelin-1 at the critical 

window of heart development inhibits cardiomyocyte proliferation and decreases 

myocyte endowment in the developing heart, which may negatively impact cardiac 

function later in life. 
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Introduction 

The intrauterine environment plays a well-established role in predisposition to 

cardiovascular disease later in life (Barker, 1995). Environmental factors during the 

critical period of heart development may alter the maturation of the heart and thus 

potentially its life-long function. Cardiomyocytes are the functional contractile units of 

the heart that undergo a normal maturation process in which terminal differentiation is 

the final outcome. As the cardiomyocytes terminally differentiate and exit the cell cycle, 

they lose their proliferative capacity (Ahuja, Sdek, et al., 2007). Cardiomyocyte growth 

then transitions from hyperplastic to hypertrophic, in which the cells can only increase in 

size rather than number (Bugaisky & Zak, 1979; F. Li et al., 1996). Ultimately the 

proliferative capacity of cardiomyocytes is lost and the adult heart is known to exhibit 

negligible increases in cell number (Bergmann et al., 2009). Therefore the timing of this 

transition is pivotal in determining cardiomyocyte endowment in the heart for the rest of 

the animal’s life. 

Hypoxia is a major stress to preterm infants, yet its effect on the development and 

maturation of the heart remains unknown. Given that the transition of cardiomyocyte 

terminal differentiation occurs in rodents during the first two weeks of neonatal life 

(Clubb & Bishop, 1984; F. Li et al., 1996), which is an equivalent timeframe to the late 

fetal stage in third trimester of human gestation (Ahuja, Sdek, et al., 2007), they provide a 

reasonable animal model to study the effect of anoxia on preterm infants at the critical 

window of the heart development. This process of terminal differentiation begins in the 

rat heart around postnatal day 4 (F. Li et al., 1996) and progresses until day 14 when the 

heart is essentially mature, thus three time-points within this period were evaluated in this 
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study. Previous studies in rats have shown that maternal hypoxia (10.5 % O2) leads to a 

premature exit from the cell cycle in fetal cardiomyocytes (Bae et al., 2003; Tong et al., 

2013; Tong et al., 2011). Additionally, neonatal cardiomyocytes have been shown to 

decrease proliferation when exposed to hypoxic conditions (F. X. Zhang et al., 2007). 

Studies have also been performed in sheep in which placental restriction is induced, 

resulting in reduced cardiomyocyte maturation (Bubb et al., 2007) and proliferation 

(Louey et al., 2007), increased proportion of mononucleate cardiomyocytes (Morrison et 

al., 2007), and decreased cardiomyocyte endowment (Botting et al., 2014). However, the 

in vivo effects of anoxia, as a preterm model, on cardiomyocyte proliferation and 

endowment in the developing rat heart are, as of yet, not known. Additionally, the 

downstream regulators of cardiomyocyte proliferation and maturation are unknown. 

 Endothelin-1 (ET-1) expression is induced by hypoxia (Hashiguchi et al., 1991; 

Ostlund et al., 2000; Yamada et al., 2001; Yamashita et al., 2001). Studies performed in 

endothelial cells (Hu et al., 1998; Minchenko & Caro, 2000) and cardiomyocytes 

(Kakinuma et al., 2001) have identified a HIF-1α binding site in the prepro-ET-1 gene.  

Furthermore, the cardiomyocyte is both a site of synthesis and action for ET-1 

(Kedzierski & Yanagisawa, 2001; Kohan et al., 2011), as it acts mainly at the paracrine 

or autocrine level (Agapitov & Haynes, 2002; Rubanyi & Polokoff, 1994). Our recent 

work showed that ex vivo ET-1 treatment promoted terminal differentiation of fetal 

cardiomyocytes, via an increase in DNA methylation (Paradis, Xiao, Zhou, & Zhang, 

2014). The predominant ET-1 receptor subtype in cardiomyocytes is the ETA-receptor 

(Kohan et al., 2011), which is thought to be involved in regulating proliferation 

(Agapitov & Haynes, 2002; Goldie, 1999; Komuro et al., 1988). Currently, little is 
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known about the role that basal ET-1 plays in the terminal differentiation of 

cardiomyocytes, as well as the effect of hypoxia/anoxia-induced ET-1 production on this 

process. 

Therefore, in the present study we tested the hypothesis that in vivo neonatal 

anoxia decreases proliferation of cardiomyocytes via the ETA-receptor-dependent 

mechanisms, resulting in reduced cardiomyocyte endowment in the developing heart. 

Herein, we provide evidence that the ETA-receptor mediates the anoxia-induced decrease 

in cardiomyocyte proliferation. Furthermore, cardiomyocyte endowment in the 

developing heart was decreased by anoxia and restored with PD156707, a selective ETA-

receptor antagonist. 

 

Methods 

Experimental Animals 

Time-dated pregnant Sprague-Dawley rats were purchased from Charles River 

Laboratories (Portage, MI) and allowed to give birth. Neonatal pups from 7 litters were 

used and divided into the treatment groups. Data from pups of multiple litters were 

pooled. Starting at postnatal day 1, newborn rats were placed in a temperature-controlled 

(37˚C) anoxia chamber. Nitrogen was infused into the chamber for 10 minutes and an 

oxygen sensor was used to verify the level of oxygen in the chamber being < 0.2%. 

Control animals were placed in a chamber with oxygen maintained at 21%. Anoxia 

treatments were performed twice a day with 8 hours in between, from postnatal day 1 

until postnatal day 3. A group of animals was treated with intraperitoneal injections of an 

ETA-receptor antagonist, PD156707 (2 mg/kg), prior to each episode of anoxia, twice a 
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day for the first 3 postnatal days. Neonatal pups were anesthetized with isoflurane and 

hearts isolated for studies on postnatal day 4, 7, and 14. To investigate the comparative 

effect of prenatal hypoxia, some of the time-dated pregnant Sprague-Dawley rats were 

treated with either normoxic control or 10.5% O2 from gestational day 15 to 21, as 

previously described (Patterson et al., 2012; Xue et al., 2011). Following the hypoxia 

treatment, pregnant rats were allowed to give birth. Hearts were isolated from postnatal 

day 4 and 7 neonatal rats. All procedures and protocols were approved by the Loma 

Linda University Institutional Animal Care and Use Committee (IACUC) and all 

procedure adhered to the guidelines by US National Institutes of Health Guide for the 

Care and Use of Laboratory Animals (http://grants.nih.gov/grants/olaw/Guide-for-the-

care-and-use-of-laboratory-animals.pdf). 

 

Measurement of Cardiomyocyte Number 

Hearts from day 4, 7, and 14 neonatal pups were isolated and the atria excised. 

The hearts were then completely enzymatically digested to yield primary 

cardiomyocytes, as previously described (Paradis et al., 2014; Y. Xiao et al., 2000). A 

pre-plate step was performed to enrich the cardiomyocyte population. This is a 

commonly used method (Chlopcikova, Psotova, & Miketova, 2001) that is based on the 

differential attachment of cardiomyocytes and non-myocyte cells of the heart. 

Cardiomyocytes take approximately 24 hours to fully attach to the plate while non-

myocytes attach within a couple hours. After a 2-hour pre-plate step to remove attached 

non-myocytes, cardiomyocytes in the media were collected and used for counting 

cardiomyocyte number via hemacytometer.  Briefly, an aliquot of cardiomyocytes was 
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counted using a hemacytometer and the counts were multiplied by the total volume of 

cell suspension and normalized according to the heart weight, to yield the number of 

cardiomyocytes per heart weight.  

 

Immunocytochemistry 

To perform immunocytochemical staining, cardiomyocytes isolated from day 4 

and 7 hearts were allowed to attach to plates in Hyclone Medium 199 (Thermo Scientific) 

supplemented with 10% fetal bovine serum (Gemini Bio-Products) and 1% antibiotics 

(10,000 I.U./mL penicillin, 10,000 µg/mL streptomycin) at 37°C in 95% air/5% CO2. 

After 24 hours, cardiomyocytes were fully attached and were double stained with alpha-

actinin, a cardiomyocyte marker, and Ki-67, a proliferation marker as described 

previously (Paradis et al., 2014; Tong et al., 2013).  Cardiomyocytes were plated on 

coverslips and fixed with 4% paraformaldehyde (ThermoScientific) for 15 minutes 

followed by permeabilization with Triton X-100 (Fisher) for 10 minutes. The cells were 

blocked with 1% bovine serum albumin for 1 hour at room temperature before incubation 

with the primary antibodies: mouse anti-α-sarcomeric actinin (A7811, Sigma) (1:200) 

and rabbit anti-Ki-67 (ab16667, Abcam) (1:100) at room temperature for 1 hour. The 

samples were incubated with the secondary antibodies: anti-mouse Alexa Fluor 488 

(A21202, Life Technologies) and anti-rabbit Alexa Fluor 647 antibodies (A21244, Life 

Technologies) for 1 hour at room temperature. Nuclei were stained with Hoescht (Sigma) 

for less than 1 minute. The immunofluorescence staining was assessed using a Zeiss Axio 

Imager.A1 microscope and quantitative analysis was carried out using ImageJ software 

(http://imagej.nih.gov/ij/). Ki-67 expression, binucleation, and cell size were measured. 



www.manaraa.com

 

54!

Flow Cytometry 

Primary cardiomyocytes isolated from day 14 neonatal rats were stained for 

analysis by flow cytometry. Cells were washed in staining buffer (PBS + 5% FBS), spun 

down, and re-suspended in 4% paraformaldehyde for 20 minutes at room temperature in 

the dark. The fixed cells were then washed in permeabilization wash buffer (eBioscience) 

and supernatant discarded. Cells were stained with antibodies for the cardiomyocyte 

marker, Troponin T (ab10214, Abcam) (1:200), and proliferation marker, Ki-67-

conjugated to allophycocyanin (APC) (eBioscience) (50-5698, 1:200). After incubation 

and washing, cells were incubated with the secondary antibody for Troponin T, 

fluorescein isothiocyanate (FITC) (555988, BD Pharmingen) (1:100). Finally cells were 

washed and resuspended in 1% paraformaldehyde to be run on a FACSAria (BD 

Biosciences) and analyzed via FACSDiva software (BD Biosciences) for percentage of 

Ki-67 expressing cardiomyocytes. 

 

Real-Time Reverse Transcription-Polymerase Chain Reaction 

RNA was isolated from the postnatal day 4 (P4) hearts and prepro-ET-1 mRNA 

abundance was determined by real-time RT-PCR using Icycler Thermal cycler (Bio-

Rad), as described previously (Xue et al., 2011). Reverse transcription and cDNA 

synthesis was performed using SuperScript III First-Strand Synthesis Supermix for RT-

PCR (Life Technologies). The primers are 5’-CTAGGTCTAAGCGATCCTTGAA-3’ 

(forward) and 5’-CTTGATGCTGTTGCTGATGG-3’!(reverse). PCR was performed in 

triplicate, and threshold cycle numbers were averaged. 
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Western Immunoblotting 

HIF-1α, ETA-receptor (ETAR), and ETB-receptor (ETBR) protein abundance in the 

P4 heart was measured from control and anoxia groups. The protein abundance of cyclin 

D2 and p27 was measured in P4 hearts from control and anoxia groups as well as in the 

presence and absence of PD156707. Tissues were homogenized and protein isolated 

using the RIPA lysis buffer system (Santa Cruz Biotechnology). Protein concentrations 

were quantified using the BCA protein assay (ThermoScientific) and all samples were 

loaded with equal protein onto 7.5% (HIF-1α) or 10% (ETAR, and ETBR, cyclin D2, and 

p27) polyacrylamide gel with 0.1% sodium dodecyl sulfate (SDS). Proteins were then 

separated by electrophoresis and transferred onto nitrocellulose membranes. Non-specific 

binding sites were blocked with Tris-buffered saline solution (TBS) containing 5% dry 

milk. The membranes were incubated with primary antibodies against HIF-1α!(sc10790, 

Santa Cruz Biotechnology; 1:500), ETAR (sc33536, Santa Cruz Biotechnology; 1:500), 

ETBR (sc33538, Santa Cruz Biotechnology; 1:500), cyclin D2 (ab3085, Abcam; 1:1000), 

and p27 (ab7961, Abcam; 1:1000). After washing, membranes were incubated with 

secondary antibodies. Proteins were visualized with enhanced chemiluminescence 

reagents and western blots were exposed to Hyper film. Kodak image software was used 

to quantify all results. 

 

Statistical Analysis 

Data are expressed as means ±!SEM. Statistical analysis (p < 0.05) was 

determined by two-way analysis of variance (ANOVA) followed by Neuman-Keuls post 

hoc test or Student’s t test, where appropriate, using GraphPad Prism software. The two-
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way ANOVA was performed to evaluate the effects of two factors, within each age 

group: (1) control versus anoxia, and (2) in the presence and absence of PD156707. 

 

Results 

Newborn Anoxia Treatment Increased Pre-proET-1 mRNA in the Heart 

Neonatal rats were exposed to anoxia twice a day from postnatal day 1 to 3, and 

hearts were isolated at P4. As seen in Figure 3.1, there was a significant increase in 

prepro-ET-1 mRNA abundance in neonatal hearts exposed to anoxia (< 0.2% O2), as 

compared to the normoxic control (21% O2). 
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Figure 3.1. Effect of newborn anoxia on prepro-ET-1 mRNA in the neonatal 
heart. Hearts were isolated from day 4 neonatal rats treated with control or anoxia. 
mRNA abundance of prepro-ET-1 was determined by real-time RT-PCR. Data are 
means ± SEM. * P < 0.05, anoxia vs. control. n = 3–5!
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Newborn Anoxia Treatment Increased HIF-1α Protein Abundance in 

the Heart 

Hearts from P4 rats treated with anoxia were collected and protein isolated. 

Neonatal hearts exposed to anoxia had significantly increased levels of the HIF-1α 

protein (Figure 3.2). 
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! !

Figure 3.2. Effect of newborn anoxia on HIF-1〈 protein abundance in the 
neonatal heart. Hearts were isolated from day 4 neonatal rats treated with 
control or anoxia. Protein abundance of HIF-1〈 was determined by Western 
immunoblotting. Data are means ± SEM. * P < 0.05, anoxia vs. control. n = 4!
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Newborn Anoxia Treatment Decreased Cardiomyocyte Proliferation 

As shown in Figure 3.3, there is a development-dependent decrease in 

cardiomyocyte proliferation at the critical window of the heart development during the 

first two weeks of life in rodents, and myocyte proliferation reduces to minimal levels at 

postnatal day 14. Anoxia treatment of newborns caused a significant decrease in the 

proliferation of neonatal cardiomyocytes at both postnatal days 4 and 7 (Figure 3.3B). 

Treatment of newborn rats with a selective ETA-receptor antagonist, PD156707, caused a 

significant increase in cardiomyocyte proliferation in P4 neonatal rats (Figure 3.3B). In 

addition, PD156707 abrogated the anoxia-induced effects in the developing hearts 

(Figure 3.3B). In contrast to proliferation, there is a development-dependent increase in 

cardiomyocyte binucleation in the developing heart (Figure 3.3C). Neither anoxia nor 

PD156707 treatments had significant effects on cardiomyocyte binucleation (Figure 

3.3C).  
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Figure 3.3. Effect of newborn anoxia and PD156707 on proliferation and 
binucleation of neonatal cardiomyocytes.  Cardiomyocytes were isolated from P4, 
P7, and P14 neonatal rats that were treated with control or anoxia, in the absence or 
presence of PD156707. Cells from P4 and P7 rats were stained with α-actinin and 
Ki-67, and nuclei were stained using Hoechst staining. P14 cardiomyocytes were 
stained with Ki-67 and analyzed via FACS. Panel A shows a representative image 
of cardiomyocytes stained with alpha-actinin (green), Ki-67 (red), and Hoescht 
(blue). Panel B shows percent of Ki-67 expressing cells. Panel C shows percent of 
binucleate cells. Data are means ± SEM. * P < 0.05, anoxia vs. control. †!P < 0.05, -
PD156707 vs. +PD156707. PD: PD156707; n: animal numbers.!



www.manaraa.com

 

62!

Newborn Anoxia Treatment Decreased Cyclin D2 and Increased p27 

Expression 

The protein expression of cyclin D2 was decreased due to anoxia treatment and 

this effect was abolished in the presence of PD156707 (Figure 3.4A). On the contrary, 

p27 expression in the neonatal heart was significantly increased due to anoxia treatment, 

and PD156707 blocked the effect of anoxia (Figure 3.4B).  
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Figure 3.4. Effect of newborn anoxia on cyclin D2 and p27 protein 
expression in the cardiomyocyte. Hearts were isolated from day 4 neonatal 
rats treated with control or anoxia in the presence (n = 6-7) or absence (n = 4) of 
PD156707.  Protein abundance of cyclin D2 in the absence and presence of 
PD156707 (A), and p27 in the absence and presence of PD156707 (B) was 
determined by Western immunoblotting.  Data are means ± SEM. * P < 0.05, 
anoxia vs. control.!
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Newborn Anoxia Treatment Decreased Cardiomyocyte Number 

by Day 14 

There was no significant change in cardiomyocyte number due to newborn anoxia 

treatment at day 4 and 7. However, results for day 14 show that anoxia leads to a 

significant decrease in cardiomyocyte number per heart weight (Figure 3.5). PD156707 

alone caused a significant increase in cardiomyocyte number in the day 7 neonate (Figure 

3.5). In the presence of PD156707, the anoxia-mediated effects at day 14 were blocked 

(Figure 3.5). 
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Figure 3.5. Effect of newborn anoxia and PD156707 on number of 
cardiomyocytes per heart weight. Cardiomyocytes were isolated from day 4, 7, and 
14 neonatal rats that were treated with control or anoxia, in the absence or presence of 
PD156707. Hearts were weighed and cardiomyocytes counted by hemacytometer 
(day 4 and 7) and FACS (day 14). Data are expressed as cardiomyocyte number/g 
heart weight, and are means ± SEM. * P < 0.05, anoxia vs. control. †!P < 0.05, -
PD156707 vs. +PD156707.  PD: PD156707; n: animal numbers.!
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Cell Size was Increased in the Presence of PD156707 

Anoxia had no effect on mononucleate or binucleate cell size at both day 4 and 7 

(Figure 3.6). However, PD156707 treatment was able to increase both mononucleate and 

binucleate cell size at postnatal day 7 (Figure 3.6). 
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  Figure 3.6. Effect of newborn anoxia and PD156707 on cardiomyocyte size in 
the neonatal heart. Cardiomyocytes were isolated from day 4, 7, and 14 neonatal 
rats that were treated with control or anoxia, in the absence or presence of 
PD156707. Mononucleate (A) and binucleate (B) cell size was measured using 
ImageJ. Data are means ± SEM. †! P < 0.05, -PD156707 vs. +PD156707.  PD: 
PD156707; n: animal numbers.!
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PD156707 Increased Heart to Body Weight Ratio 

There was no significant effect of anoxia on the heart to body weight ratio for any 

day (Figure 3.7). However, PD156707 treatment significantly increased the heart to body 

weight ratio in day 4 and 7 neonates (Figure 3.7). Heart and body weight averages in the 

presence and absence of anoxia and PD156707 are listed in Table 3.1. 
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Figure 3.7. Effect of newborn anoxia and PD156707 on heart to body weight 
ratio of neonatal rats. Body and heart weights were taken from day 4, 7, and 14 
neonatal rats that were treated with control or anoxia, in the absence or presence of 
PD156707. Data are means ± SEM. †!P < 0.05, -PD156707 vs. +PD156707.  PD: 
PD156707; n: animal numbers.!
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Neonatal Anoxia Had No Effect on ET-Receptor Density 

Hearts from postnatal day 4 rats that were treated with anoxia were collected and 

protein isolated. There was no significant change in protein abundance of either ETAR or 

ETBR, due to anoxia treatment (Figure 3.8). 
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Figure 3.8. Effect of newborn anoxia on ETA- and ETB-receptor protein 
abundance in the neonatal heart. Hearts were isolated from day 4 neonatal rats 
treated with control or anoxia. Protein abundance of ETAR (A) and ETBR (B) was 
determined by Western immunoblotting. Data are means ± SEM. n = 4-5!
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Prenatal Hypoxia Decreased Cardiomyocyte Proliferation in the Fetal 

Heart 

To investigate the comparative effect of prenatal hypoxia, pregnant rats were 

treated with either normoxic control or 10.5% O2 from gestational day 15 to 21, and 

hearts were isolated from postnatal day 4 and 7 neonatal rats. Similar to the findings in 

newborn anoxia treatment, prenatal hypoxia resulted in a significant decrease in the 

proliferation of cardiomyocytes at postnatal day 7 (Figure 3.9A), but had no significant 

effects on percent binucleation (Figure 3.9B) or the heart to body weight ratio (Figure 

3.9C). 
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Figure 3.9. Effect of prenatal hypoxia on neonatal cardiomyocyte 
proliferation, binucleation, and heart to body weight ratio. Cardiomyocytes 
were isolated from day 4 and 7 neonatal rats that were treated with control or 
maternal hypoxia. Cells were stained with α-actinin and Ki-67, and nuclei 
stained with Hoechst. Panel A shows percent of Ki-67 expressing cells (n = 3-
4). Panel B shows percent of binucleate cells (n = 4).  Panel C shows the heart 
to body weight ratio (n = 8-9). Data are means ± SEM. * P < 0.05, hypoxia vs. 
control.!
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Discussion 

In the present study, we provide evidence showing that in vivo newborn anoxia 

leads to a decrease in the proliferation of cardiomyocytes in the developing heart. 

Furthermore, our results suggest that anoxia treatment leads to a significant reduction in 

number of cardiomyocytes per heart weight of the day 14 neonate, which is terminally 

differentiated. The findings that anoxia increased ET-1 production in the heart and the 

anoxia-induced changes in proliferation and cardiomyocyte number were reversed with 

PD156707, suggest a mechanism mediated by the ETA-receptor. In addition, basal ET-1 

was also found to play a role in cardiomyocyte proliferation, as well as the heart to body 

weight ratio. 

 Cardiomyocytes undergo a terminal differentiation process that reaches 

completion by the first two weeks of neonatal life in rats (Ahuja, Sdek, et al., 2007; 

Clubb & Bishop, 1984). After this, cardiomyocytes in the heart have negligible 

proliferative capacity and further growth is mainly via hypertrophy. Thus the number of 

cardiomyocytes that will reside in the adult heart is determined during this early stage and 

if altered may result in life-long consequences. Hypoxic stress during perinatal 

development has been shown by previous studies to diminish the proliferation of 

cardiomyocytes (Paradis et al., 2014; Tong et al., 2013; Tong et al., 2011). Furthermore, 

fetal hearts exposed to hypoxia have fewer (Bae et al., 2003; Botting et al., 2014) and 

larger cardiomyocytes (Bae et al., 2003), and adult male rats that were exposed to 

hypoxia in utero were more susceptible to ischemic injury as seen by increased 

myocardial infarction and reduced recovery (G. Li et al., 2003). 
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Preterm birth is a complex clinical problem that is highly associated with episodes 

of severe hypoxia and even anoxia, which can be so severe that the infant must be 

mechanically ventilated (Bolivar et al., 1995). Preterm infants have an immature 

respiratory system (Martin, Wang, Koroglu, Di Fiore, & Kc, 2011) that is unable to 

provide adequate oxygen at times and thus ventilatory support is frequently needed. 

However, several studies have shown that episodic airway obstruction and hypoxemia 

commonly occur in these infants (Dimaguila, Di Fiore, Martin, & Miller, 1997; 

Dransfield, Spitzer, & Fox, 1983). Given that the rodent heart is relatively immature at 

birth, the present study with episodic anoxia treatments of newborn rats provides a 

reasonable animal model to study the effects of anoxia/hypoxia on the heart development 

in preterm infants. Anoxia itself has been shown to alter proliferation, and, in rat 

fibroblasts, leads to arrest of the cell cycle at the G1 and S phase (Gardner, Li, Yang, & 

Dang, 2003).  

To confirm the extent of hypoxic exposure to the neonatal hearts used in our 

study, the protein levels of hypoxia-inducible factor 1 alpha (HIF-1α) were evaluated. 

The results show that HIF-1α!protein abundance is significantly increased in neonatal 

hearts exposed to in vivo anoxia; furthermore increased levels of HIF-1α!in the heart have 

also been observed in the prenatal hypoxia model (Bae et al., 2003).  In agreement with 

previous work, we showed that cardiomyocyte proliferation was decreased following in 

vivo neonatal anoxia treatment at postnatal day 4 and 7. The cardiomyocytes take 

approximately 24 hours for them to fully attach to the plate before the 

immunocytochemical staining of Ki-67 can be performed. While the potential effect of 

this attachment process on the rate of proliferation may not be excluded in the present 
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study, the same procedure applied to all treatment groups. By postnatal day 14, there was 

a trend for anoxia to decrease proliferation however this trend was not significant in our 

data. The heart is thought to be fully mature and essentially an adult phenotype of 

cardiomyocytes by day 14 in rats, therefore the rate of myocyte proliferation is normally 

very low at this point and anoxia had no significant effect on lowering it further. 

Similarly, our results from the prenatal hypoxia model showed a decrease in the 

proliferation of neonatal cardiomyocytes at postnatal day 7. Interestingly, newborn 

anoxia had no significant effect on the binucleation of cardiomyocytes. Previous work 

has shown that maternal hypoxia leads to an increase in the amount of binucleate 

cardiomyocytes in the fetal heart (Bae et al., 2003), thus indicating a development stage-

specific effect. 

Furthermore, we investigated two proteins that are closely involved in the 

regulation of the cell cycle: cyclin D2 and p27. These proteins have previously been 

studied and found to be differentially expressed in the hypoxia-treated fetal heart (Tong 

et al., 2013). Cyclin D2 is associated with other cell cycle regulators that work to promote 

cell cycle activity, while p27 is a cyclin-dependent kinase inhibitor and thus inhibits cell 

cycle activity. Therefore the expression of these two proteins should be inversely related, 

as our results indicate. Cyclin D2, a cell cycle promoter, is significantly decreased during 

anoxia treatment, while the cell cycle inhibitor, p27, is upregulated under these 

conditions. These results are consistent with our finding that anoxia treatment decreases 

cardiomyocyte proliferation. In addition, we tested the role of ET-1 acting through its 

ETAR on the expression of cyclin D2 and p27. In the presence of PD156707, an ETAR 

antagonist, anoxia had no effect on cyclin D2 expression. However, p27 expression was 
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significantly decreased in the presence of PD156707 compared to control conditions. 

These findings suggest that ET-1 and the ETAR are key mediators in the anoxia-induced 

effects on cyclin D2 and p27. Ultimately, these results may help to explain the overall 

decrease in cardiomyocyte proliferation due to anoxia treatment.  

Although a gradual decrease in proliferation in the critical window of the heart 

development is a normal developmental process, hypoxia and anoxia appear to accelerate 

this progression, particularly during the early development. The endpoint of 

cardiomyocyte number is a metric to measure the consequence of altering the 

proliferative capacity. Our results suggest that anoxia reduces cardiomyocyte endowment 

at postnatal day 14, when the heart is presumed to be fully mature and cardiomyocytes 

have terminally differentiated. Anoxia reduced proliferation at days 4 and 7, resulting in 

fewer cardiomyocytes in the differentiated heart seen at day 14. Given that 

cardiomyocytes are the functional contractile units of the heart, this decreased 

cardiomyocyte endowment in the heart may have negative impact in cardiac function and 

become more susceptible to injury later in life. While our results suggest a significant 

reduction in cardiomyocyte endowment due to anoxia at the critical window of the heart 

development, future studies using unbiased and random stereology will be needed to 

provide conclusive evidence of this effect. 

Previous studies from our laboratory and others have shown that hypoxia 

regulates proliferation of cardiomyocytes and vascular muscle (Cooper & Beasley, 1999; 

Paradis et al., 2014; Tong et al., 2013; F. X. Zhang et al., 2007). However the 

downstream regulators of this response have yet to be identified. Our previous work in an 

ex vivo model showed that primary fetal cardiomyocytes exhibited a similar decrease in 
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proliferation when treated with endothelin-1 (ET-1) (Paradis et al., 2014). It is known that 

ET-1 expression is induced under hypoxic conditions via a HIF-binding site on its 

promoter (Hashiguchi et al., 1991; Hu et al., 1998; Minchenko & Caro, 2000; Ostlund et 

al., 2000; Yamada et al., 2001; Yamashita et al., 2001), specifically in cardiomyocytes 

(Kakinuma et al., 2001). ET-1 itself has also been shown to regulate proliferation, having 

a mitogenic effect on vascular smooth muscle (Agapitov & Haynes, 2002; Goldie, 1999; 

Komuro et al., 1988). Moreover our results showed an increase in prepro-ET-1 mRNA in 

the P4 neonatal heart when exposed to anoxia. Previous work has also shown an increase 

in prepro-ET-1 mRNA in the fetal heart exposed to maternal hypoxia (Paradis et al., 

2014). These studies taken together implicate a role for ET-1 in mediating the hypoxia- 

and anoxia-induced decrease in cardiomyocyte proliferation. 

A selective ET-receptor antagonist was used to study the role of both basal and 

anoxia-induced ET-1 in the present study. ET-1 can activate two receptor subtypes: the 

ETA- and ETB-receptor. Activation of the ETA-receptor leads to vasoconstriction and is 

primarily found in vascular muscle (Hosoda et al., 1991). In contrast, the ETB-receptor 

can provide a vasodilation effect as well as vasoconstriction depending on the receptor 

location, in endothelial cells (Sakurai et al., 1990) or vascular muscle (Arai et al., 1990; 

Kawanabe & Nauli, 2011; Sakurai et al., 1990; Yanagisawa, 1994), respectively. The 

ETB-receptor also plays a role in the clearance of endothelin from tissues (Wilkes et al., 

1993). In cardiomyocytes, the ETA-receptor is the predominant subtype (Kohan et al., 

2011), and has been implicated in regulating proliferation (Agapitov & Haynes, 2002; 

Goldie, 1999; Komuro et al., 1988). Therefore, our study evaluated the effects of 

PD156707, a selective antagonist for the ETA-receptor (Reynolds et al., 1995), on 
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cardiomyocyte proliferation. Due to the short half-life of PD156707 of about one hour 

(Coe, Haleen, Welch, Liu, & Coceani, 2002), it was given twice a day just prior to anoxia 

exposure in the present study. We also evaluated the protein expression of the ET-

receptors, both ETAR and ETBR. Interestingly, the results showed no change in the 

expression of either receptors due to anoxia treatment, suggesting that a change in 

receptor density is not contributing to the effects of anoxia or ET-1. The finding that 

PD156707 ameliorated the anoxia-induced decrease in proliferation of cardiomyocytes at 

day 4 and 7 implicates the ETA-receptor as a key mediator. Furthermore, the addition of 

PD156707 alone elicited an increase in proliferation at day 4 beyond that of the control. 

This observation was not seen at day 7 or day 14, suggesting that the regulation of basal 

ET-1 function in the heart is dependent on the stage of development. At an earlier stage, 

basal ET-1 levels play a key role in regulating cardiomyocyte proliferation. The effect of 

basal ET-1 in regulating cardiomyocyte endowment in the developing heart is intriguing. 

The treatment of newborn rats with ETA-receptor antagonist led to an increase in 

cardiomyocyte number per heart weight at day 7, suggesting that an appropriate level of 

basal ET-1 is necessary to optimize cardiomyocyte endowment in the heart.  

Anoxia treatment had no significant effect on mononucleate and binucleate cell 

size, however inhibition of ETAR by PD156707 caused an increase in cell size at day 7. 

This may suggest that basal ET-1 plays a role in maintaining cell size and, and if 

activation of the ETA-receptor is blocked, the cell undergoes hypertrophy. The change in 

binucleate cell size is likely more relevant because the mononucleate cells still have the 

capacity to divide and are not yet terminally differentiated.  
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The heart to body weight ratio was unchanged with anoxia treatment for all age 

groups. However by blocking basal ET-1 with PD156707, the heart to body weight ratio 

was increased at postnatal day 7. These results suggest that the heart is increasing in size, 

which agrees with the results of increased cell size, proliferation, and cardiomyocyte 

number in the presence of PD156707. In the present study, the cardiomyocyte number 

were counted in freshly isolated myocytes, and the in vivo PD156707 treatment increased 

the cardiomyocyte number by about 65% in day 7 hearts. It has been previously 

demonstrated in neonatal rats that the heart contains approximately 25% cardiomyocytes 

(Banerjee, Fuseler, Price, Borg, & Baudino, 2007; Walsh, Ponten, Fleischmann, & 

Jovinge, 2010). If the PD156707 treatment induced proportional changes in the non-

myocyte composition of the heart, it might increase the cardiomyocyte composition in the 

heart to around 42%, albeit the proliferation of non-myocyte cells in the heart could be 

differentially regulated. It is important to note that although changes in cardiomyocyte 

size measured in cells that were attached to plates suggest a physiological difference due 

to the PD156707 treatment, they are not necessarily representative of what's happening in 

vivo. It is likely that the increases of both cardiomyocyte number and cell size contribute 

to the increased heart weight observed at day 7 neonatal rats. The finding that the heart to 

body weight ratio is unchanged at day 14 even though anoxia treatment decreases 

cardiomyocyte endowment implies that the cardiomyocytes may increase their size to 

compensate for the loss of cells and maintain the size of the heart. However, we were 

unable to measure cardiomyocyte size from the day 14 hearts due to technical limitations 

and their poor attachment to the culture plate at this stage. Another possibility includes an 

increase in non-cardiomyocyte cell number and size in the heart after anoxia treatment.  
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The present study evaluated not only the effects of newborn anoxia treatment on 

the terminal differentiation of neonatal cardiomyocytes but also the role of basal ET-1 on 

this process. We identified a mechanism through which neonatal anoxia exposure induces 

an accelerated loss of cardiomyocyte proliferation via the ETA-receptor, which 

subsequently results in reduced cardiomyocyte endowment in the fully differentiated 

heart. Our study also demonstrated the role that basal ET-1 plays in regulating 

cardiomyocyte size, proliferation, and number in the developing heart. Given the clinical 

implications of these findings in understanding the effects of hypoxia on the heart 

development in preterm infants, further investigation into the mechanisms involved is 

needed. 
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Abstract 

Hypoxia is a fetal stressor that is known to lead to the production of endothelin-1 

(ET-1). Previous work has shown that ET-1 treatment leads to the premature terminal 

differentiation of fetal cardiomyocytes, however the mechanism is, as of yet, unknown. 

We tested the hypothesis that the fetal cardiomyocyte proteome will be greatly altered 

due to ET-1-treatment, revealing a potential molecular mechanism of ET-1-induced 

terminal differentiation. Over a thousand proteins were detected in the fetal 

cardiomyocytes and of that 75 proteins were significantly altered due to ET-1 treatment. 

Following pathway analysis, the merged network depicted several key proteins that 

appear to be involved in regulating proliferation, including: EED, UBC, ERK1/2, MAPK, 

Akt, and EGFR. Of particular interest is the EED protein, which is associated with 

regulating proliferation via epigenetic mechanisms. Herein we propose a model of the 

molecular mechanism by which ET-1 induced cardiomyocyte terminal differentiation 

occurs. 

 

Introduction 

There is compelling evidence indicating that an adverse intrauterine environment 

can result in an increased vulnerability to cardiovascular disease later in adult life 

(Barker, 1995; Barker & Osmond, 1986). Environmental stress factors during fetal 

development can impact the growth and maturation of critical organs in the developing 

fetus, such as the heart. Hypoxia is one major stress factor to the developing fetus. 

Previous studies have shown that a hypoxic environment results in the premature terminal 

differentiation of fetal cardiomyocytes (Bae et al., 2003; Paradis et al., 2014; Tong et al., 
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2013; Tong et al., 2011), characterized by decreased proliferative capacity. Terminal 

differentiation is the final step in the maturation of cardiomyocytes and it occurs in a 

timeframe surrounding birth. Cardiomyocytes undergo cell-cycle withdrawal soon after 

birth, and the majority of postnatal cardiac growth is due to cardiomyocytes growing in 

size with very little proliferation (Bergmann et al., 2009). Studies have shown that 

hypoxia accelerates this maturation process and can ultimately lead to fewer 

cardiomyocytes endowed within the heart (Bae et al., 2003). The heart is fully mature 

shortly after birth and thus the timing of this transition is crucial in determining the 

number of cardiomyocytes that will reside in the heart for a lifetime. If this timeline is 

perturbed, it may lead to long-term detrimental consequences on heart development and 

function throughout life. 

Several in vivo and in vitro fetal studies have shown the effect of hypoxia on fetal 

heart development, however the mechanisms remain largely unknown. Our recent studies 

have suggested a role for endothelin-1 (ET-1) in hypoxia-induced terminal differentiation 

of cardiomyocytes (Paradis et al., 2014). Hypoxia is known to induce ET-1 expression 

(Hashiguchi et al., 1991; Ostlund et al., 2000; Yamada et al., 2001; Yamashita et al., 

2001), and the cardiomyocyte is both a site of synthesis and action of ET-1 (Kedzierski & 

Yanagisawa, 2001; Kohan et al., 2011). Although ET-1 has been implicated in the 

accelerated terminal differentiation process, the protein regulators downstream to ET-1 

are unknown. 

Therefore, in the present study we tested the hypothesis that ET-1 alters the 

expression of key regulatory proteins involved in cardiomyocyte terminal differentiation. 

Herein, we provide evidence that ET-1 treatment differentially regulates expression of 
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key proteins involved in the maturation and proliferation of fetal cardiomyocytes. Our 

proteomics experiment identified seventy-five (75) proteins that were previously 

unknown to be differentially modulated by ET-1 treatment in fetal cardiomyocytes. 

Collectively, the effect of these proteins may describe the molecular mechanism(s) that 

dictate(s) accelerated terminal differentiation of cardiomyocytes. 

 

Materials and Methods 

Experimental Animals 

Time-dated pregnant Sprague-Dawley rats were purchased from Charles River 

Laboratories (Portage, MI). Hearts were isolated from day 21 fetuses, as previously 

described (Paradis et al., 2014). To isolate hearts, pregnant rats were anesthetized with 

isoflurane, and adequate anesthesia was determined by loss of pedal withdrawal reflex. 

Fetuses were removed and pregnant rats killed by removing the hearts. Fetal hearts were 

isolated for the studies. All procedures and protocols were approved by the Institutional 

Animal Care and Use Committee and followed the guidelines by US National Institutes 

of Health Guide for the Care and Use of Laboratory Animals. 

 

Primary Cardiomyocyte Culture and Treatment 

Cardiomyocytes were isolated from day 21 fetal rats as previously described 

(Paradis et al., 2014; Y. Xiao et al., 2000). Briefly, hearts were enzymatically digested 

then preplated to further enrich in cardiomyocytes. Cells were cultured in Hyclone 

Medium 199 (Thermo Scientific) supplemented with 10% fetal bovine serum (Gemini 

Bio-Products) and 1% antibiotics (10,000 I.U./mL penicillin, 10,000 µg/mL 
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streptomycin) at 37°C in 95% air/5% CO2. BrdU (0.1mM) was added to the medium to 

prevent fibroblast proliferation. Within three days of culture, the cells formed a 

monolayer with synchronized beating, characteristic of viable cardiomyocytes. Cells 

were treated in the absence or presence of ET-1 (Sigma; 10 nM) in the growth media at 

70-80%  confluency for 24 hours. 

 

Proteomic Analysis 

Analysis of the isolated primary cardiomyocytes proteome was done before and 

after ET-1 treatment by Tandem Mass Tag (TMT) labeling of the peptides followed by 

tandem mass tags (TMTs)-LC-MS/MS analysis with an LTQ-Orbitrap-Pro instrument as 

previously described (D. Xiao et al., 2014; L. Xiong et al., 2011; K. Zhang et al., 2012).  

TMT reagents belong to a family of reagents known as isobaric mass tags, which provide 

a high throughput alternative to immunoblot based quantitation. 

Primary fetal cardiomyocytes were homogenized in RIPA lysis buffer (Santa Cruz 

Biotechnology) containing protease inhibitors and protein concentrations were 

determined using the BCA assay (ThermoScientific). Proteins were reduced by 50 mM 

DTT in triethyl ammonium bicarbonate buffer (TEAB) at 55°C for 30 minutes and then 

alkylated with 50 mM 2-iodoacetamide (IAA) for 45 minutes at room temperature in 

dark. Next, proteins were precipitated with acetone (80% v/v of acetone) and 

reconstituted in 90 µl TEAB. An aliquot of 100 µg proteins was digested with 4 µg of 

freshly prepared trypsin (Sigma) at 37°C for at least 10 hours. Resulting peptides were 

TMT labeled at their N-term end by TMT duplex kit (Thermoscientific) according to the 

manufacture’s instructions. Samples!from!each!treatment!group!were!TMTBlabeled!
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with!one!of!the!respective!reporters!at!m/z=!126.1!(control)!and!127.1!(ETB1,!

10nM).  Each TMT-labeled protein pool was acidified with 0.1% formic acid (FA) and 

fractionated with strong cation-exchange (SCX) chromatography on a Toptip column 

(Poly LC, MD). For fractionation, the matrix was equilibrated with 0.1% FA in 20% 

acetonitrile (ACN) to facilitate peptide binding. After collection of the flow-through 

(FT), 1 mL of each subfraction was sequentially eluted with solvents, 50 mM KCl, 200 

mM KCl, and 5% ammonium hydroxide in 20% ACN.  Next, the fractions were dried 

under vacuum to remove ACN, reconstituted in 1% FA, and then desalted using a Toptip 

column with C18/hypercarb mixed materials (Poly LC, MD). The eluted peptides were 

once again vacuum-dried, reconstituted in 30 µl of 0.1% FA, and then subjected to LC-

MS/MS analysis. The LC-MS/MS analysis was performed as described previously (K. 

Zhang et al., 2012). Quantitation of SCX fractionated TMT-labeled peptides was carried 

out on the Thermo LTQ-Orbitrap Pro mass spectrometer. Peptides were separated by 

online reversed phase liquid chromatography (RPLC) using an Easy-nLC that is equipped 

with an autosampler (Thermo Scientific). A 10 cm, 75 µm id, 3 µm particle size, C18-A2 

analytical column (Thermo) was used for the RPLC separations. Approximately 3.2 µg of 

peptide sample was injected. A pre-column (Thermo, 0.1 x 2 cm, 5 µm C18-A1) 

connected in line preceding the analytical column and a 200-min gradient (solvent A, 

0.1% FA in water; solvent B, 0.1% FA in ACN) from 5-30% solvent B was used for 

separating the peptides. The Orbitrap mass analyzer was set to acquire data at 60,000 

resolution for the parent full-scan mass spectrum followed by data-dependent high 

collision-energy dissociation (HCD) MS/MS spectra for the top 10 most abundant ions 

acquired at 7500 resolution. Mass Spectrometry data were processed and searched against 
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rat protein database through the Thermo Scientific Proteome Discoverer 1.3 platform 

using SEQUEST search engine with parameters as previously described (L. Xiong et al., 

2011). Protein expression levels (i.e., fold change values of protein expression in ET-1 

treated group relative to control) were expressed as the ratios of the intensities of reporter 

ions (127/126). We applied the following criteria for data analysis. For a protein 

expression fold change to be considered significant, a fold change cut-off value of 1.146 

(more than 14.6% up-or down-regulation) was used.  Though our previous work (D. Xiao 

et al., 2014) along with others (L. Xiong et al., 2011; K. Zhang et al., 2012) used a cut-off 

value of 1.2 for similar isobaric TMT labeling experiments, in this study we used a 

slightly relaxed cut-off value to include changes in expression those proteins that would 

otherwise fall just short of being significant and that these proteins may also be of 

physiological significance. For a protein to be considered correctly detected with unique 

peptides, respective MS/MS spectrum was checked on Proteome Discoverer (version 1.3) 

and only accepted if the major product ions matched the theoretically predicted product 

ions from the database. Subsequently, Ingenuity Pathway Analysis (IPA) tool (Qiagen) 

was used to decipher molecular pathway relationships between significantly modulated 

proteins in the form of network maps. 

 

Results 

Endothelin-1 Alters the Fetal Cardiomyocyte Proteome 

 A total of more than a thousand proteins were identified in the fetal 

cardiomyocytes by one-dimensional LC-MS/MS approach. Of these proteins, the 

expression of 75 proteins was differentially modulated due to endothelin-1 treatment 
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compared to untreated control groups (Table 4.1).  IPA pathway analysis was performed 

using stringent filter (rodent) to decipher relationships amongst the modulated proteins.  

This analysis revealed that the modulated proteins were distributed into five discrete 

networks 1 thru 5 corresponding to Figures 2 thru 6, which are presented here with their 

sub-cellular distribution. Figure 4.1A depicts the merged network map, whose keys are 

presented in Figure 4.1B. The proteins associated with each network as well as their 

known functions are depicted in Table 4.2.  Figures 4.7, 4.8, 4.9, and 4.10 are network 

maps of those proteins that are interacting with the four major convergence points 

(proteins): 1) EED, 2) UBC, 3) ERK/p38 MAPK/Akt/RhoA, and 4) EGFR respectively. 
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Figure 4.1. Merged network map showing endothelin-1-induced changes in 
the fetal cardiomyocyte proteome. Primary fetal cardiomyocytes were treated 
with control or endothelin-1 (10 nM) for 24 hours. Protein expression analysis 
was performed in fetal cardiomyocytes by TMT-LC-MS/MS analysis with a 
LTQ-Orbitrap-Velos instrument. IPA pathway analysis using the stringent filter 
(rodent) revealed five separate sub-networks for endothelin-1-modulated 
proteins.  Panel A depicts a merged network of all the proteins detected. Panel 
B is the key.  The network is represented based on sub-cellular distribution.!
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Figure 4.2. Network 1. ET-1 induced proteins, which are known to be involved in 
organ morphology, skeletal and muscular system development and function, and 
embryonic development. The network is represented based on sub-cellular 
distribution. 
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Figure 4.3. Network 2. ET-1 induced proteins, which are known to be involved in 
cancer and infectious diseases. The network is represented based on sub-cellular 
distribution. 
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Figure 4.4. Network 3. ET-1 induced proteins, which are known to be involved in 
gene expression and organismal injury and abnormalities. The network is 
represented based on sub-cellular distribution. 
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Figure 4.5. Network 4. ET-1 induced proteins, which are known to be involved in 
cellular assembly and organization, tissue development, and molecular transport. 
The network is represented based on sub-cellular distribution. 
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Figure 4.6. Network 5. ET-1 induced proteins, which are known to be involved in 
RNA post-transcriptional modification, post-translational modification, and 
connective tissue disorders. The network is represented based on sub-cellular 
distribution. 
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Figure 4.7. EED interacting proteins. The ET-1 induced cardiomyocyte 
proteome reveals a large number of proteins that are interacting with EED 
(embryonic ectoderm development), a potential key player in the ET-1 induced 
effects on the cardiomyocyte.  



www.manaraa.com

 

99#

 
 
 
 
 

 
  

Figure 4.8. UBC interacting proteins. The ET-1 induced cardiomyocyte 
proteome reveals a large number of proteins that are interacting with UBC 
(ubiquitin protein C), one of the major convergence points in the merged 
network map. 
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Figure 4.9. ERK1/2 interacting proteins. The ET-1 induced 
cardiomyocyte proteome reveals a large number of proteins that are 
interacting with ERK1/2, a key protein involved in cell survival and 
proliferation.  
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Figure 4.10. EGFR interacting proteins. The ET-1 induced 
cardiomyocyte proteome reveals a large number of proteins that are 
interacting with EGFR (epidermal growth factor receptor), another 
major convergence points in the merged network map. 
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 Figure 4.11. Proposed mode of action of ET-1. Endothelin-1 stimulates 
cardiomyocyte terminal differentiation and decreases proliferation, whereas the 
EED protein is known to do the opposite. The proposed model illustrates a 
mechanism by which ET-1 induces UBC, which may lead to a downregulation of 
EED and thus inhibit its effect on proliferation and differentiation. 
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Accession ## Entrez Gene Name# Location# 127/126 ±!
SEM#

Fold 
Change#

IPI00777957.2# acid phosphatase 2, lysosomal# Cytoplasm# 0.859 ±#
0.014# -1.164#

IPI00189813.1# actin, alpha 1, skeletal muscle# Cytoplasm# 0.736 ±#
0.039# -1.358#

IPI00189819.1# actin, beta# Cytoplasm# 0.759 ±#
0.022# -1.317#

IPI00200455.1# actin, gamma 2, smooth muscle, enteric# Cytoplasm# 0.746 ±#
0.016# -1.340#

IPI00363022.4# actinin, alpha 2# Nucleus# 0.795±#
0.050# -1.258#

IPI00213463.2# actinin, alpha 4# Cytoplasm & Nucleus# 0.846 ±#
0.048# -1.182#

IPI00763263.2# Aly/REF export factor# Nucleus# 0.863 ±#
0.029# -1.158#

IPI00199911.2# ADP-ribosylation factor interacting protein 1# Cytoplasm# 2.465 ±#
0.058# 2.465#

IPI00365705.6# ATPase, H+/K+ exchanging, alpha polypeptide# Plasma Membrane# 0.843 ±#
0.021# -1.186#

IPI00952436.1# ATPase, H+ transporting, lysosomal 50/57kDa, 
V1 subunit H# Cytoplasm# 1.148 ±#

0.056# 1.148#

IPI00480620.1# 3-hydroxybutyrate dehydrogenase, type 1# Cytoplasm# 0.866 ±#
0.106# -1.155#

IPI00372004.3# basic transcription factor 3# Nucleus# 0.781 ±#
0.017# -1.282#

IPI00565758.1# CDV3 homolog (mouse)# Cytoplasm# 1.157 ±#
0.010# 1.157#

IPI00364337.3# charged multivesicular body protein 6# Cytoplasm# 1.224 ±#
0.044# 1.224#

IPI00201505.3# CCHC-type zinc finger, nucleic acid binding 
protein# Nucleus# 0.846 ±#

0.104# -1.182#

IPI00780087.2# collagen, type IV, alpha 1# Extracellular Space# 0.771 ±#
0.086# -1.305#

IPI00230832.7# cytochrome c oxidase subunit VIc# Cytoplasm# 0.847 ±#
0.045# -1.181#

IPI00370154.3# cleavage and polyadenylation specific factor 1, 
160kDa# Nucleus# 0.804 ±#

0.013# -1.243#

Table 4.1. Endothelin-1-mediated changes in the fetal cardiomyocyte proteome. Represented 
is a list of 75 proteins whose expression was altered by ET-1 treatment of the fetal 
cardiomyocyte. The fold change (126/127) refers to the change in protein expression in 
cardiomyocytes treated with 10nM ET-1 compared to control. 
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IPI00562653.2# cathepsin B# Cytoplasm# 0.839 ±#
0.016# -1.192#

IPI00370330.4# cut-like homeobox 1# Nucleus# 0.806 ±#
0.030# -1.241#

IPI00373131.3# DDRGK domain containing 1# Extracellular Space# 1.167 ±#
0.009# 1.167#

IPI00421517.7# desmin# Cytoplasm# 1.296 ±#
0.030# -1.296#

IPI00230946.4# dipeptidyl-peptidase 7# Cytoplasm# 0.861 ±#
0.083# -1.162#

IPI00372810.5# eukaryotic translation initiation factor 3, subunit 
A# Cytoplasm# 0.866 ±#

0.029# -1.155#

IPI00947800.1# echinoderm microtubule associated protein like 
2# Cytoplasm# 0.867 ±#

0.005# -1.153#

IPI00365904.4# glutaredoxin 5# Cytoplasm# 0.765 ±#
0.045# -1.306#

IPI00471669.1# glypican 4# Plasma Membrane# 0.868 ±#
0.060# -1.151#

IPI00231976.7# histone cluster 1, H2ba# Nucleus# 0.801 ±#
0.036# -1.248#

IPI00393508.3# histone cluster 1, H2bb# Nucleus# 0.486 ±#
0.054# -2.058#

IPI00767428.2# histone cluster 1, H3i# Nucleus# 0.57 ±#
0.033# -1.754#

IPI00476722.4# histone cluster 2, H3a# Nucleus# 0.518 ±#
0.058# -1.931#

IPI00960040.1# histone cluster 4, H4# Nucleus# 0.646 ±#
0.047# -1.549#

IPI00199887.1# junctophilin 2# Cytoplasm# 0.85 ±#
0.028# -1.177#

IPI00382153.4# keratin 5# Cytoplasm# 1.233 ±#
0.072# 1.233#

IPI00421781.1# keratin 72# Other# 1.328 ±#
0.052# 1.328#

IPI00421812.1# keratin 76# Cytoplasm# 1.178 ±#
0.066# 1.178#

IPI00231014.1# LIM domain kinase 2# Cytoplasm# 0.87 ±#
0.015# -1.149#

IPI00201060.4# lamin A/C# Nucleus# 0.81 ±#
0.059# -1.235#
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IPI00958096.1# GF20391-like# Other# 0.734 ±#
0.065# -1.362#

IPI00959660.1# RAB1B, member RAS oncogene family-like# Other# 0.829 ±#
0.076# -1.207#

IPI00957208.1# keratin 6A-like# Other# 1.179 ±#
0.086# 1.179#

IPI00203211.4# leucine rich repeat (in FLII) interacting protein 1# Other# 1.195 ±#
0.030# 1.195#

IPI00211813.2# myosin, heavy chain 10, non-muscle# Cytoplasm# 0.872 ±#
0.035# -1.146#

IPI00230979.1# nicotinamide phosphoribosyltransferase# Extracellular Space# 0.863 ±#
0.101# -1.158#

IPI00201261.2# nestin# Cytoplasm# 0.806 ±#
0.033# -1.240#

IPI00365822.3# ninein (GSK3B interacting protein)# Cytoplasm# 0.822 ±#
0.072# -1.216#

IPI00831725.1# nitrilase 1# Cytoplasm# 0.834 ±#
0.053# -1.200#

IPI00364693.3# NOP2/Sun RNA methyltransferase family, 
member 2# Nucleus# 0.85 ±#

0.060# -1.176#

IPI00366831.3# OTU domain containing 6B# Other# 1.163 ±#
0.078# 1.163#

IPI00949808.1# PDZ and LIM domain 5# Cytoplasm# 1.164 ±#
0.055# 1.164#

IPI00370658.1# pinin, desmosome associated protein# Plasma Membrane# 1.178 ±#
0.092# 1.178#

IPI00365600.3# protein kinase, cAMP-dependent, regulatory, 
type II, beta# Cytoplasm# 0.846 ±#

0.028# -1.181#

IPI00194524.1# phosphoribosyl pyrophosphate synthetase-
associated protein 2# Other# 1.59 ±#

0.170# 1.590#

IPI00367437.5# RNA binding motif (RNP1, RRM) protein 3# Cytoplasm# 0.869 ±#
0.016# -1.151#

IPI00565999.1# similar to H3 histone, family 3B# Other# 0.752 ±#
0.090# -1.329#

IPI00567981.3# similar to Histone H3.3# Other# 0.805 ±#
0.017# -1.243#

IPI00777683.2# similar to pyridoxal (pyridoxine, vitamin B6) 
kinase# Other# 0.83 ±#

0.037# -1.204#

IPI00196562.3# RIC8 guanine nucleotide exchange factor A# Cytoplasm# 0.85 ±#
0.005# -1.176#
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IPI00764478.2# small ArfGAP 1# Cytoplasm# 0.865 ±#
0.035# -1.156#

IPI00949260.1# sorting nexin 18# Cytoplasm# 0.867 ±#
0.021# -1.153#

IPI00365613.2# sorting nexin 6# Cytoplasm# 1.186 ±#
0.157# 1.186#

IPI00231263.3# structure specific recognition protein 1# Nucleus# 0.857 ±#
0.114# -1.166#

IPI00364043.4# symplekin# Cytoplasm# 0.87 ±#
0.059# -1.149#

IPI00205262.5# synaptopodin 2# Cytoplasm# 0.87 ±#
0.053# -1.149#

IPI00362425.1# troponin C type 1 (slow)# Cytoplasm# 0.861 ±#
0.005# -1.162#

IPI00231699.5# troponin I type 1 (skeletal, slow)# Cytoplasm# 0.869 ±#
0.053# -1.151#

IPI00197888.2# tropomyosin 1, alpha# Plasma Membrane# 0.813 ±#
0.039# -1.230#

IPI00187731.4# tropomyosin 2, beta# Cytoplasm# 0.86 ±#
0.059# -1.163#

IPI00196557.4# translin-associated factor X interacting protein 1# Cytoplasm# 0.853 ±#
0.096# -1.172#

IPI00554003.3# titin# Cytoplasm# 0.73 ±#
0.047# -1.370#

IPI00361693.1# twinfilin actin-binding protein 1# Cytoplasm# 0.847 ±#
0.063# -1.180#

IPI00957757.1# unc-80 homolog (C. elegans)# Cytoplasm# 0.839 ±#
0.019# -1.192#

IPI00230941.5# vimentin# Cytoplasm# 0.78 ±#
0.039# -1.282#

IPI00400610.4# vacuolar protein sorting 13 homolog B (yeast)# Nucleus# 1.196 ±#
0.011# 1.196#

IPI00564521.2# widely interspaced zinc finger motifs# Nucleus# 0.86 ±#
0.021# -1.162#

 
Data are mean ± SEM. 
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Network# Top Diseases and 
Functions#

Focus 
Molecules# Molecules in Each Network#

1#

Organ Morphology, 
Skeletal and Muscular 
System Development 

and Function, 
Embryonic 

Development#

22#

ACTA1, ACTB, ACTG2, Actin, ACTN2, ACTN4, 
Alpha Actinin, CD3, Cofilin, COL4A1, CTSB, 

Cytokeratin, DES, ERK1/2, F Actin, G-Actin, Histone 
h3, LIMK2, Mek, MYH10, Myosin, NAMPT, Nes, 

NIT1, PDLIM5, RBM3, Rock, Tni, TNNC1, TNNI1, 
Tpm1, Tpm2, TTN, TWF1, VIM#

2#
Cancer, 

Gastrointestinal 
Disease, Infectious 

Disease#
15#

ARF3, ARF5, ARFIP1, ASCC3, CDC42BPA, CDV3, 
CHMP6, CHMP4A, CHMP4B, DDRGK1, DDX3Y, 

DPP7, EML2, HIST1H3I, IPO13, JPH2, KRT76, 
LARP4B, METTL9, NIN, NXN, OTUD6B, PKD1, 

PRKD2, RPF2, SMAP1, SNF8, SNX8, SNX18, 
SYNPO2, UBC, USP54,V PS25, VPS36, VPS13B#

3#
Gene Expression, 

Cancer, Organismal 
Injury and 

Abnormalities#
14#

ACP2, Akt, ALYREF, BTF3, CDH15, Ck2, CNBP, 
CUX1, Cyclin A, DNTTIP2, EIF5, EIF3A, estrogen 
receptor, FSH, HIST1H2BA, HIST2H3A, HIST4H4, 

Histone h4, IL1, Insulin, KDM5A, KRT72, Lh, 
LMNA, Nes, NFkB (complex), P38 MAPK, PDAP1, 
PDLIM3, PRDM2, PRKAR2B, Rnr, SSRP1, Vegf, 

ZNF519#

4#
Cellular Assembly and 
Organization, Tissue 

Development, 
Molecular Transport#

11#

AOC3, APP, ARL6IP5, ATP4A, ATP6V1A, 
ATP6V1G1, ATP6V1H, BDH1, Cox6c, cyclic AMP, 
EGFR, EIF2B2, ETHE1, FAM3B, FGF2, ganglioside 

GM2, GLRX5, GPC4, peptidase, PNN, PRPSAP2, 
RHOA, RIC8A, RUSC1, SCAMP3, SNX1, SNX4, 

SNX6, SOX9, TBRG4, TCIRG1, TPRA1, TSNAXIP1, 
USP6NL, ZCCHC17#

5#

RNA Post-
Transcriptional 

Modification, Post-
Translational 
Modification, 

Connective Tissue 
Disorders#

7#

CEP290, CLK2, Cpsf, CPSF1,C PSF2, CPSF3, 
CPSF4, CPSF6, CSTF2, CSTF-CPSF-SYMPK, 
DDX42, EED, EHMT1, EIF3D, GPI, HIST4H4, 

HNRNPL, Ighg2a, KRT5, LOC100360950, NSUN2, 
NUP188, PABPN1, PAPOLA, PCBP2, PKP2, POGZ, 

RAB5C, SENP2, SMARCAD1, SUMO3, SYMPK, 
TSEN15, VPRBP, WIZ#

 
 

 
 

Table 4.2. Top diseases and functions associated with each network. The proteins are 
categorized into 5 networks and pathway analysis reveals the major functions and diseases 
that these groups of proteins are known to be associated with.  
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Discussion 

This present study identified proteins that were modulated due to ET-1 treatment 

of the fetal cardiomyocyte. Most of these proteins were found to be significantly 

downregulated (green color) with some that were significantly upregulated (red color). 

The proteins involved in each of the 5 networks are depicted in Table 4.2. When multiple 

pathways are merged, several convergence points (proteins) were identified.  These 

proteins may indicate key regulators of the fetal cardiomyocyte proteome due to ET-1 

treatment (Figure 4.1A). 

Of particular interest is the convergence of numerous interacting proteins (Figure 

4.7) with EED (embryonic ectoderm development), which is located at the bottom left of 

the merged network map (Figure 4.1). EED is a member of the Polycomb group (PcG) 

proteins, which are important transcriptional repressors (Boyer et al., 2006). These 

proteins repress transcription of several key developmental regulators that would 

otherwise promote cell differentiation. It is a key component of the PRC2 complex, along 

with EZH2 and SUZ12, which is involved in histone modification and subsequent gene 

silencing (T. I. Lee et al., 2006).  Though EED per se, did not show any significant 

changes in our study, several interacting protein partners of EED, e.g., LMNA, VIM, 

TTN, PNN, ACTB, ACTN 4, COL4A1, Histone cluster 2 were down-regulated (Figure 

4.7).  Consequently and cumulatively this situation may compromise the function of EED 

as well as of PRC2 complex.  Our IPA analyses mapped all modulated proteins that 

interact with EED (Figure 4.7).  These findings are in agreement with Biogrid database 

(http://thebiogrid.org). 
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Several studies have demonstrated the important role of the PRC2 complex in 

development. For example, the deletion of EED results in perinatal lethal heart defects 

and thinned myocardium (He et al., 2012). Inactivation of EED in fetal cardiomyocytes 

led to an upregulation in developmental and cell cycle regulators (He et al., 2012). 

Additionally, it was shown that Ezh2 promotes cardiomyocyte proliferation by 

suppressing the cell cycle inhibitors, Ink4a and Ink4b (He et al., 2012). 

The results of this present study implicate EED as a potential key regulator of 

endothelin-1-induced effects. Figure 4.7 illustrates a large number of interactions that 

EED has with various identified proteins following ET-1 treatment. Considering the role 

EED plays within the PRC2 complex to suppress gene transcription, it is possible that 

this protein is regulating the expression of several of the other proteins identified in this 

study. Most of the proteins revealed in this study were downregulated due to ET-1 

treatment, several of which are involved in organ morphology and development. Our 

previous work (Paradis et al., 2014) demonstrated that ET-1 treatment of fetal 

cardiomyocytes resulted in increased terminal differentiation, characterized by increased 

binucleation and decreased proliferation. These morphological changes are crucial to the 

overall development of the heart and its function throughout a life. This present study 

reveals that the protein EED may be a key regulator of the morphological and functional 

changes previously observed by ET-1 treatment.  

The second convergence point is found in the center of the merged network map 

(Figure 4.1), surrounding UBC (ubiquitin C). This protein is depicted as interacting with 

numerous other proteins that were identified via the pathway analysis (Figure 4.8). UBC 

is an ubiquitin precursor and a source of ubiquitin proteins. Ubiquitin can be conjugated 
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to other various proteins and in turn targets them for proteasomal degradation. Based on 

the network map, it appears that UBC is interacting with the majority of proteins 

identified in this study. That being said, it may be possible that UBC is involved in the 

downregulation of many of the mapped proteins, including EED. A study has shown that 

the level of PRC2 can be regulated by ubiquitination (Zoabi, Sadeh, de Bie, Marquez, & 

Ciechanover, 2011). This complex is actually dissociated into the individual units (EED, 

Ezh2, and SUZ12), which are then ubiquitinated and degraded (Zoabi et al., 2011). 

Therefore this study provides evidence that ubiquitin can be conjugated to EED, leading 

to its degradation. The pathway analysis suggests UBC is a key regulator of the protein 

changes observed following ET-1 treatment. Of particular interest is the likelihood that 

UBC is regulating another key player, EED, involved in the ET-1-induced fetal 

cardiomyocyte proteome (Figure 4.11). 

The two proteins, EED and UBC, are associated with epigenetic mechanisms, for 

example histone modifications. Our study identified several histone proteins were also 

significantly downregulated in the ET-1 treated fetal cardiomyocytes. These proteins 

include: HIST1H2BA, HIST1H2BB, HIST1H3I, HIST2H3A, and HIST4H4. Histone 

proteins are an essential component of chromatin. The biosynthesis of these proteins is 

tightly linked to the cell cycle (Ewen, 2000; Ma et al., 2000; Zhao et al., 2000); as DNA 

replicates, more histone proteins must also be produced (Osley, 1991). The ET-1 

treatment induced decrease in histone protein expression supports our previous (Paradis 

et al., 2014) evidence that ET-1 treated fetal cardiomyocytes prematurely exit the cell 

cycle. If these cells are no longer actively cycling, then reduced histone production may 

occur. 
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A third convergence point of interactions between proteins is found in the upper 

left corner of the merged network map (Figure 4.1). These proteins are key players 

involved in proliferation and the cell cycle, including: ERK1/2, p38 MAPK, Akt, and 

RhoA. These proteins are shown to have many interactions with others in the network 

(Figure 4.9). One such protein is vimentin, a key structural protein that is associated with 

RhoA signaling. Eriksson et al. reviews the topic of vimentin and RhoA interaction and 

suggests that the outcome of RhoA-mediated signaling is dependent on the presence and 

organization of vimentin (Eriksson et al., 2009). Furthermore, several diseases caused by 

mutations in lamin A/C are shown to have defective MAPK and Akt signaling cascades 

(Carmosino et al., 2014). It is possible that changes in lamin A/C expression would alter 

the structure of the nuclear envelope and thus disrupt ERK1/2 activity and its 

downstream cascade (Carmosino et al., 2014). Considering the crucial role that ERK1/2, 

MAPK, and Akt play in cell survival and proliferation, it is likely that the dysregulation 

of structural proteins such as lamin A/C can alter the signaling pathways of the before 

mentioned proteins and thus decrease proliferation. Moreover, our previous work has 

found that ET-1 induces a decrease in proliferation of fetal cardiomyocytes (Paradis et 

al., 2014). Therefore these proliferation-involved proteins may provide a mechanism 

through which ET-1 induces its functional changes. 

A fourth convergence point on the merged map (Figure 4.1) is localized to the 

plasma membrane, surrounding EGFR (epidermal growth factor receptor). The proteins 

that are interacting with EGFR are depicted in Figure 4.10. Activation of the epidermal 

growth factor receptor results in a signaling cascade that leads to cell proliferation. 

Particularly in the cardiomyocyte, this pathway is crucial to their function and survival 
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(Sridharan et al., 2013). Mutations in this receptor as well as its closely related family 

members, has been shown to result in dilated cardiomyopathy (Crone et al., 2002; Garcia-

Rivello et al., 2005; Ozcelik et al., 2002). Studies evaluating the developmental role of 

the EGFR family of receptors have found that it is essential for cardiac development and 

muscle differentiation (Garcia-Rivello et al., 2005; Gassmann et al., 1995). Mutations in 

this family of receptors cause lethality during mid-embryogenesis most likely due to a 

lack of cardiac trabeculae (Gassmann et al., 1995; K. F. Lee et al., 1995). These studies 

suggest that EGFR and its family of receptors are essential to cardiac development and 

may implicate this pathway in the regulation of the ET-1-induced effects on the 

cardiomyocyte. 

The expression of several proteins involved in post-transcriptional and post-

translational modifications were also differentially regulated by ET-1 treatment. Our 

previous work has shown that ET-1 treatment leads to an increase in global DNA 

methylation of fetal cardiomyocytes and in the presence of a DNA methylation inhibitor 

the ET-1 induced premature terminal differentiation was also blocked (Paradis et al., 

2014). Together these findings suggest that several routes of epigenetic mechanisms may 

be involved in cardiomyocyte maturation. This finding may further implicate the 

involvement of the EED protein considering its role in transcriptional regulation via 

epigenetic modifications. As part of the PRC2 complex, EED has been shown to utilize 

histone modifications in order to suppress various developmental regulators that would 

otherwise promote cell differentiation (T. I. Lee et al., 2006). In the context of the 

developing heart, this may suggest that the EED protein is increased during early heart 

development when proliferation is high. However as the heart nears maturation, it is 
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likely that EED becomes downregulated to allow for differentiation to occur. ET-1 is 

shown to accelerate terminal differentiation (Paradis et al., 2014), and based on our 

current data ET-1 treatment may decrease EED levels in order to promote differentiation 

and maturation of the heart. 

ET-1 treatment of fetal cardiomyocytes also led to a downregulation of 

cytoskeletal and contractile proteins, many of which have been associated with cardiac 

disease. Several of the proteins identified in this present study are known to be associated 

with heart disease such as, 1) hypertrophic cardiomyopathy (cardiac troponin I, titin, α-

tropomyosin, and α-actin) and 2) dilated cardiomyopathy (actin, tropomyosin, troponin I 

and C, titin, desmin, and LIM protein) (Harvey & Leinwand, 2011; Wieczorek, 

Jagatheesan, & Rajan, 2008). 

Our present work found that tropomyosin alpha and beta were both 

downregulated due to ET-1. Previous work has shown that a mutation in α-tropomyosin 

leads to hypertrophic cardiomyopathy and cardiac dysfunction (Coviello et al., 1997; 

Wieczorek et al., 2008). Another form of heart disease, dilated cardiomyopathy, can also 

result from a mutation in tropomyosin (Rajan et al., 2010; Wieczorek et al., 2008). 

Likewise, the loss of actin has been implicated in heart disease and failure (Olson, 

Michels, Thibodeau, Tai, & Keating, 1998; Stefani et al., 2008). Thus, the 

downregulation of these proteins due to ET-1 treatment may predispose the heart to 

cardiovascular dysfunction and disease. 

Mutations in titin, a large sarcomeric protein, have been associated with increased 

incidence of dilated cardiomyopathy (Herman et al., 2012; McNally, 2012). Therefore a 

decrease in titin function is implicated in contractile dysfunction and disease. Our study 
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also revealed that vimentin, a cytoskeletal component, was significantly downregulated 

due to ET-1 treatment. This protein is detected in developing muscle however not in 

muscle that has become terminally differentiated (Eriksson et al., 2009; Gard, Bell, & 

Lazarides, 1979; Granger & Lazarides, 1979), which supports our previous work (Paradis 

et al., 2014) showing ET-1’s ability to promote terminal differentiation of 

cardiomyocytes. 

Another structural protein identified in our study, which plays a crucial role in 

cardiomyocyte function, is Lamin A/C. Dilated cardiomyopathy has been observed in 

mice with lamin A/C mutations (Mounkes, Kozlov, Rottman, & Stewart, 2005; Nikolova 

et al., 2004; van Berlo, Duboc, & Pinto, 2004) and the cardiomyocytes of these hearts 

have increased fragility and abnormal nuclear structure (Nikolova et al., 2004). Along 

with dilated cardiomyopathy, a specific lamin A/C mutation resulted in early death due to 

arrhythmia (Mounkes et al., 2005). A review of the literature by Carmosino et al. on the 

role of lamin A/C in cardiomyocyte functions, implies that a decrease in lamin A/C 

expression is key in promoting cardiomyocyte senescence (Carmosino et al., 2014). 

Altogether these studies imply that lower levels of lamin A/C can result in cardiac disease 

(Carmosino et al., 2014). Therefore, our present work suggests that ET-1 treatment 

results in a significant decrease in lamin A/C expression and may result in a 

predisposition to cardiovascular disease. 

The major intermediate filament in cardiomyocytes (Tokuyasu, Maher, Dutton, & 

Singer, 1985), desmin, has been shown to interact with lamin A/C (Carmosino et al., 

2014). Increased disorganization of desmin filaments is observed in lamin A/C mutations 

of the heart (Nikolova et al., 2004; Sebillon et al., 2003). Desmin mutations have also 
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been associated with dilated cardiomyopathy (Wang et al., 2001). Desmin-related 

myopathies are characterized by desmin aggregates (Abraham et al., 1998) and this 

aberrant aggregation is shown to lead to desmin network disruption, abnormal nuclear 

shape, and cardiac dysfunction (Wang et al., 2001; Wang, Osinska, Gerdes, & Robbins, 

2002). 

The present study examined the ET-1 induced changes in the fetal cardiomyocyte 

proteome. Our proteomic analyses revealed a number of proteins that may be involved in 

the ET-1-induced terminal differentiation process previously described (Paradis et al., 

2014). Based on our pathway analysis, many of these proteins are associated with 

pathways that regulate proliferation and survival of cardiomyocytes. Furthermore, many 

of the proteins identified are known to be downregulated in heart disease, implying that 

these young hearts may be more susceptible to disease. The results of this study provide 

supporting evidence to pursue several avenues of protein interactions in order to identify 

the molecular mechanism behind the ET-1-induced premature terminal differentiation of 

cardiomyocytes. 
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CHAPTER FIVE 

GENERAL DISCUSSION 

Potential Mediators of Premature Terminal Differentiation 

Hypoxia is a far too common stress to the developing fetus. A key mediator of the 

effects of hypoxia is endothelin-1 (ET-1). The gene for this small peptide contains a 

hypoxia-response element (Hu et al., 1998; Kakinuma et al., 2001; Minchenko & Caro, 

2000) and thus becomes quickly elevated under a low oxygen environment. Therefore, 

this present work hypothesized that ET-1 is intermediating the hypoxia/anoxia-induced 

terminal differentiation of cardiomyocytes. Prepro-ET-1 is significantly increased under 

hypoxia and anoxia as was shown in chapters two and three. Furthermore by blocking the 

ET-receptors (both selectively and non-selectively), the hypoxia/anoxia-induced effects 

were abrogated, providing further evidence for ET-1 as a key downstream regulator. 

As described in chapters two and three, hypoxia and anoxia treatment lead to a 

significant decrease in the proliferation of cardiomyocytes. The endowment of this 

functional unit of the heart during the critical stage of development can have a major 

impact on the overall function of the heart. Both in vitro hypoxia and in vivo anoxia 

treatment significantly reduced the percentage of proliferating cardiomyocytes. Similarly, 

treatment of fetal cardiomyocytes versus neonatal rats yielded the same effects on 

cardiomyocyte proliferation. Together, this suggests a true effect of hypoxia on 

cardiomyocyte proliferation, regardless of the method of treatment used.   

Interestingly, the in vitro and in vivo model of hypoxia/anoxia had different 

results in regards to the percent of binucleation. The in vitro treatment of fetal 

cardiomyocytes with hypoxia or ET-1 led to a significant increase in binucleation. 



www.manaraa.com

 

117#

However the in vivo anoxia model did not yield the same result; the percent of 

binucleation was not changed in this case. This difference may be due to a variety of 

differences in experimental design. Other studies have also shown an increase in 

binucleation of fetal cardiomyocytes (Bae et al., 2003; Jonker et al., 2010) however 

studies have not been performed in neonatal cardiomyocytes previously. Furthermore, the 

in vitro culture treatment versus in vivo treatment may explain the differential 

binucleation results. These two forms of treatment may elicit very different effects on the 

cardiomyocyte. The in vitro treatment showed the direct effect of ET-1 on the maturation 

of fetal cardiomyocytes, which lead to increased binucleation. However, the in vivo 

model was utilized to simulate the anoxic episodes that often occur in preterm newborns. 

In this model, there are many other factors other than ET-1 involved and thus these 

factors may be counteracting ET-1�s direct effect on binucleation. 

 Much evidence from the studies laid out in chapters two and three indicate that 

the endothelin-receptor is a key mediator of the hypoxia/anoxia-induced effects.  A non-

selective ET-receptor antagonist (PD145065) was utilized in the in vitro studies and it 

was found to block the effects of the ET-1 treatment. Subsequently, the selective ETA-

receptor (PD156707) was able to abrogate the anoxia-induced effects on proliferation. 

The ETA-receptor is the predominant subtype found in cardiomyocytes (Kohan et al., 

2011) and thus of particular interest for these studies. Although the receptor density was 

unchanged in the neonatal heart treated with anoxia, the inhibition of this receptor 

abrogated the anoxia-induced effects on the heart. 

In chapter three, the results showed that anoxia treatment led to an increase in p27 

expression and decrease in cyclin D2 expression. The p27 protein associated with cyclin 
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and cyclin-dependent kinase complexes and inhibits their activity. In this way, p27 works 

to regulate the cell cycle and control cell proliferation (Ishida, Kitagawa, Hatakeyama, & 

Nakayama, 2000). Normally, the amount of p27 is increased during G0-G1 phase, when 

p27 translation and protein stability is maximal (Wander, Zhao, & Slingerland, 2011), but 

then decreases upon entry into S phase (Nourse et al., 1994). This cell cycle inhibitor, 

p27, is predominantly regulated by post-translational modifications (Hengst & Reed, 

1996; Pagano et al., 1995). One common modification is phosphorylation, which 

regulates the stability, localization, and function of p27 (Wander et al., 2011). 

Phosphorylation at a certain residue can stabilize the p27 protein and is more commonly 

observed in cells found in the G0 or G1 phase of the cell cycle (Ishida et al., 2000). 

Although the expression of phosphorylated p27 protein was not measured in the present 

studies, it is likely that the expression of this form would also be significantly altered in 

mature cardiomyocytes. Terminally differentiated cardiomyocytes have significantly 

decreased expression of Ki-67, a protein that is expressed in every phase of the cell cycle 

except for the G0 phase. Therefore these mature cardiomyocytes are not actively dividing 

and have exited the cell cycle and now reside in the G0 phase. Seeing that adult 

cardiomyocytes are terminally differentiated and that there is an increase in p27 

expression, it leads us to presume that the levels of the phosphorylated form would also 

be altered. 

Another post-translational modification that modulates p27 expression is 

ubiquitination. The degradation of p27 can be achieved through both the ubiquitin-

proteasome pathway and ubiquitin-independent proteolytic cleavage (Shirane et al., 

1999). The ubiquitination of p27 has been observed to be lower during the G0/G1 phase as 
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compared to the G1/S transition (Shirane et al., 1999). Thus it is possible that an increase 

in terminal differentiation of cardiomyocytes may coincide with a decrease in p27 

ubiquitination. Ubiquitin protein C (UBC) is a key protein that interacted with numerous 

other proteins identified in the proteomics study outlined in chapter four. UBC appears to 

interact with a majority of the proteins identified in the pathway analysis, suggesting that 

ubiquitination is a key mechanism involved in the differential expression of these 

proteins following ET-1 treatment. UBC expression itself was not measured in the 

present studies but it is likely that UBC’s interaction with p27 may be reduced while its 

interaction with other proteins may increase, resulting in terminally differentiated 

cardiomyocytes. 

The expression and role of p27 and cyclin D2 is inversely correlated, as implied 

by the results in chapter three. In fact, it has been suggested that cyclin D2 plays a key 

role in p27 downregulation during the transition from the G0 to G1 phase (Susaki, 

Nakayama, & Nakayama, 2007). Cyclin D2 can mediate the translocation of p27 from the 

nucleus to the cytoplasm were p27 degradation then takes place (Susaki et al., 2007). Our 

results show that p27 expression is increased while cyclin D2 expression is decreased due 

to anoxia treatment. This may suggest that an alternative explanation for increased p27 

expression is due to the corresponding decrease in cyclin D2. Without as much cyclin D2 

present, the p27 is not rapidly translocated to the cytoplasm for degradation and thus it 

can elicit its inhibitory effects on the cell cycle. 

The proteomics analysis in chapter four also revealed an interaction between a 

number of proteins involved in proliferation and cell survival, such as Akt, ERK1//2, and 

p38 MAPK. The proliferation pathway in cardiomyocytes is initiated by several signaling 
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mechanisms involving the PI3K/Akt and Ras/ERK pathways (Ahuja, Perriard, et al., 

2007; Kang & Sucov, 2005; Sucov, Gu, Thomas, Li, & Pashmforoush, 2009; Tseng et al., 

2005). Data from Lee et al. suggests that activation of ERK and Akt pathways can lead to 

the phosphorylation and degradation of p27 (J. G. Lee & Kay, 2011). The expression of 

p27 was found to be downstream of the ERK pathway (Gysin, Lee, Dean, & McMahon, 

2005), and the inhibition of p27 would lead to greater cell proliferation. Inhibition of the 

ERK pathway thus results in greater expression of the cell cycle inhibitor, p27 (Gysin et 

al., 2005). In the light of our present work, these studies may suggest that the ERK 

pathway is diminished due to hypoxia/anoxia treatment.  

Several studies have shown that Akt can phosphorylate p27 at several residues 

and subsequently abolish the function of the cell cycle inhibitor (Fujita, Sato, Katayama, 

& Tsuruo, 2002; Liang et al., 2002). Akt activation can also lead to increased FOXO 

(Forkhead O) transcription factors, followed by decreased p27 expression and increased 

cardiomyocyte proliferation (Evans-Anderson, Alfieri, & Yutzey, 2008). Together, these 

studies imply that the Akt pathway is closely involved in the proliferation of 

cardiomyocytes via the regulation of the cell cycle inhibitor p27. Chapters two and three 

of this present study showed that cardiomyocyte proliferation is decreased while p27 

expression is increased. Furthermore, chapter four provided evidence that both the ERK 

and Akt pathways may be key players in the mechanism leading to ET-1-induced 

premature terminal differentiation. 

 

Implications of an Altered Cardiomyocyte Population 

Proper cardiomyocyte endowment is a crucial component in establishing a 
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fortified heart that can function properly for a lifetime. The present work provides 

evidence that an anoxia-induced premature terminal differentiation may reduce 

cardiomyocyte endowment. Based on the field of Developmental Origins of Health and 

Disease, it is well established that stresses in utero can alter the structure and function of 

organs, predisposing them to disease later in life. The developing heart is no exception. 

The functional unit of the heart, the cardiomyocyte, is necessary in providing the 

contractile force to pump blood throughout the body. Therefore if the structure and 

function of the cardiomyocytes become altered, then the overall function of the heart 

would consequentially be affected. Hearts of these individuals may have decreased 

cardiac function and be unable to cope with stress later in life. 

Porello et al. have shown that a decrease in the population of cardiomyocytes in 

the neonate has a great impact on the adult heart. Later in life, the less populated hearts 

may be more vulnerable to situations where there is increased stress or workload 

(Porrello et al., 2009; Porrello, Widdop, & Delbridge, 2008). Studies by this group have 

also suggested that adult cardiac hypertrophy originates in early neonatal development 

when cardiomyocyte growth is altered (Porrello et al., 2009). Dysregulated trophic 

signaling, such as through increased PI3K or suppressed MAPK activation, have been 

associated with the establishment of cardiac hypertrophy (Porrello et al., 2009). Previous 

work from our lab has shown that prenatal hypoxia increases the susceptibility of the 

heart to ischemia-reperfusion injury in adulthood (G. Li et al., 2003). Together these 

studies suggest that the cardiomyocyte population determined during the perinatal period 

is essential to the proper structure and function of the adult heart. A reduced 

cardiomyocyte population will increase the vulnerability of that heart to disease 
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throughout its life, especially if it encounters a secondary stress in adulthood. 

There are a number of factors that can determine cardiomyocyte endowment, 

including: hormones and signaling pathways related to proliferation, apoptosis, and of 

course the timing of terminal differentiation (Botting et al., 2012). Based on the present 

study, hypoxia/anoxia and the downstream ET-1 appear to also be involved in regulating 

the endowment of cardiomyocytes. This work found that anoxia treatment leads to a 

significant decrease in proliferation during early neonatal time-points followed by an 

ultimate reduction in cardiomyocyte endowment by neonatal day 14. By the end of the 

first two neonatal weeks, the heart is presumed to be fully mature and like that of an adult 

heart. Therefore, neonatal anoxia treatment alters the rate of proliferation, which 

ultimately alters the number of cardiomyocytes per weight of the adult heart. 

 

Potential Epigenetic Mechanisms Involved in Premature 

Terminal Differentiation 

The perinatal environment can elicit its effects on the development of an organ 

via epigenetic mechanisms. The work presented here provides evidence that two of the 

major epigenetic mechanisms, DNA methylation and histone modifications, are involved 

in the premature terminal differentiation of cardiomyocytes. ET-1 treated fetal 

cardiomyocytes had a significant increase in global DNA methylation, as shown in 

chapter two. The increase in global DNA methylation was associated with an accelerated 

cardiomyocyte terminal differentiation. Previous work by Kou et al. has shown that the 

first two weeks of neonatal life when cardiomyocytes normally transition to the 

terminally differentiated form is correlated with an increase in DNA methylation (Kou et 
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al., 2010). Altogether suggesting that a hypermethylated genome is associated with the 

terminal differentiation of cardiomyocytes (Kou et al., 2010). Our results using the DNA 

methylation inhibitor, 5-aza-2’-deoxycytidine, provide further evidence for this 

phenomenon. Following the addition of 5-aza-2’-deoxycytidine, ET-1’s effect on 

cardiomyocyte binucleation and proliferation were also blocked. Therefore suggesting 

that DNA methylation is a mechanism by which ET-1 induces a premature terminal 

differentiation of cardiomyocytes. Although global DNA methylation was not measured 

in chapter three, we presume that the anoxia-induced premature terminal differentiation 

would be associated with a hypermethylated genome. Anoxia is shown to induce ET-1 

and if this peptide acts through DNA methylation to alter terminal differentiation, then 

we presume simulating anoxia itself would result in the same effect. 

At this point, no specific methylation studies have been done however it is 

possible that two of the cell cycle genes, p27 and cyclin D2, are being differentially 

methylated. The expression of these two proteins are inversely correlated and tightly 

involved in regulating the cell cycle and hence proliferation and terminal differentiation. 

Studies have found that the p27 and cyclin D2 genes are located in the same gene cluster 

(Ansari-Lari et al., 1998; Qian, Jin, & Lloyd, 2000). This gene cluster consists of many 

regulatory genes including those involved in cell proliferation, and it is found on human 

chromosome 12p13 as well as its syntenic regions on mouse and rat chromosomes 

(Ansari-Lari et al., 1998). Due to the location of these genes in the same gene cluster, it 

has been suggested that there is a common regulatory mechanism due to shared 

regulatory elements (Qian et al., 2000). One possible regulatory mechanism may be DNA 

methylation or histone modifications modulating the expression of these two genes.  
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However, considering the fact that these two cell cycle genes are inversely 

correlated, it is possible that different regulatory mechanisms are involved. The 

expression of p27 appears to be increased under circumstances that promote terminal 

differentiation while the expression of cyclin D2 is decreased. Therefore, differential 

methylation of these two regions may be occurring. It is also possible that histone 

modifications are differentially activating the transcription of p27 and repressing the 

transcription of cyclin D2 under hypoxic/anoxic conditions that stimulate terminal 

differentiation. 

Interestingly, the expression of several histone proteins was decreased in ET-1 

treated fetal cardiomyocytes, as described in chapter four. This finding may suggest that 

the DNA is more unwound and less compact following ET-1 treatment. Histones play a 

key role in winding DNA to condense and compact the genome. In order for transcription 

to occur, the DNA must be unwound from the histones so that the transcription 

machinery can access the genes. Therefore a decrease in the expression of histones may 

suggest that the DNA is unwound and allowing greater access for transcription to occur. 

Terminal differentiation is likely associated with a decrease in the transcription of several 

proliferative and cell cycle genes while the transcription of genes associated with 

differentiation is increased. Therefore certain regions of the genome may be less compact 

due to a loss of histone proteins and result in increased transcription of those regions. 

Subsequently, while a decrease in histone proteins may result in a less compacted 

genome, there is also an increase in global DNA methylation. In this way certain genes, 

particularly those related to proliferation, may still be “turned off”#to allow terminal 

differentiation to occur. 
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Regardless of the expression of histones, modification of these proteins may also 

be regulating the period of terminal differentiation. The PRC2 complex, of which EED is 

a crucial subunit, is involved in histone modifications and subsequent gene silencing (T. 

I. Lee et al., 2006). EED was identified in the proteomics analysis to be a key mediator in 

the ET-1 induced terminal differentiation of cardiomyocyte. The PRC2 complex is 

particularly involved in retaining the cell in a proliferative state by silencing genes related 

to cell differentiation. Although the expression of EED was not measured, it is likely that 

its expression is decreased as the cell transitions to a terminally differentiated form.  

Overall, the present study suggests that many epigenetic mechanisms are involved 

in regulating this critical period of terminal differentiation. Future studies will be needed 

to elucidate this intricate mechanism further. 

 

Conclusion 

 The perinatal environment is one that is experienced by every single individual. 

One of the most detrimental and far too common insults during this time is hypoxia. This 

environmental stress during the crucial period of development can have lasting effects on 

the structure and function of an individual throughout life. This present study provides 

evidence for the damaging effects of hypoxia/anoxia on the cardiomyocyte population in 

the heart. Hypoxia/anoxia treatment decreases cardiomyocyte proliferation and ultimately 

leads to premature terminal differentiation and reduced cardiomyocyte endowment in the 

adult heart. This present work identified a novel mechanism by which ET-1 is a key 

mediator of the effects of hypoxia/anoxia on cardiomyocyte development, more 

specifically via the ETA-receptor. Furthermore, this work illuminates several regulatory 
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mechanisms and potential molecular pathways involved in the process of premature 

terminal differentiation. This process appears to be linked to cell cycle genes, such as p27 

and cyclin D2, as well as several epigenetic mechanisms. Global DNA methylation is 

enhanced due to ET-1 treatment and when this mechanism becomes abrogated, the ET-1 

induced terminal differentiation is also blocked. The findings presented here also 

implicate the expression and epigenetic modification of histone proteins as potential 

mechanisms in the hypoxia/ET-1-induced premature terminal differentiation of 

cardiomyocytes. In addition, a proteomics analysis of proteins differentially regulated and 

potentially involved in the ET-1 induced terminal differentiation will allow future studies 

to further elucidate the mechanism behind this process. Future studies will be imperative 

considering the importance of optimizing the development and endowment of 

cardiomyocytes in the heart at an early stage. 
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Figure 5.1. Summary of the effects of ET-1 on cardiomyocyte maturation. The 
effect of hypoxia/anoxia exposure on cardiomyocytes is mediated by endothelin-1 
(ET-1). Varying effects were observed in fetal cardiomyocytes treated ex vivo and 
neonatal cardiomyocytes treated in vivo. ET-1-treated fetal cardiomyocytes had 
increased binucleation, decreased proliferation, increased global DNA methylation, 
and a significantly altered proteomic profile. The in vivo neonatal anoxia model also 
resulted in a decrease in proliferation as well as a significant reduction in 
cardiomyocyte endowment in the day 14 heart.  
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